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Chapter 1

Newton’s laws of motion

1.1 Position dependent forces

1. (20 points.) Radial free fall of a meteoroid. Refer 20210121 video.

2. (20 points.) (Refer Landau and Lifshitz, Problem 1 in Chapter 3.) A simple pendulum consists of a
particle of mass m suspended by a massless rod of length [ in a uniform gravitational field g.

()

Identify the two forces acting on the pendulum to be the force of gravity mg and the force of tension
T. Thus, deduce the Newton equation of motion to be

ma=mg+ T, (1.1)

where a is acceleration of mass m. Starting from Eq.(1.1) derive the equation of motion for the
simple pendulum

d*¢ )
Tz —w? sin ¢, (1.2)
where
2w g
_2r_ ]9 1.3
T TV (13)
Starting from Eq. (1.2) derive the statement of conservation of energy for this system,
1 .
§ml2¢2 — mgl cos ¢ = constant. (1.4)

Hint: Multiply Eq. (1.2) by (b and express the equation as a total derivative with respect to time.
For initial conditions ¢(0) = ¢o and ¢(0) = 0 show that

1 .
5m12¢2 — mgl cos ¢ = —mgl cos ¢y. (1.5)

Thus, derive
“_1 »
To 27 \/2(cos ¢ — cos ¢p)

where Ty = 2m4/1/g.

The time period of oscillations of the simple pendulum is equal to four times the time taken between
¢ =0 and ¢ = ¢g. Thus, show that

b0
-4 dé (1.7)
21 Jo  /2(cos ¢ — cos ¢p)
b0
_ b (1.8)

d¢
T Jo 1/sin2% —sinzg
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Then, substitute sind = sin(¢/2)/sin(¢o/2) to determine the period of oscillations of the simple
pendulum as a function of the amplitude of oscillations ¢g to be

2 .
T="T, ;K (sm%) , (1.9)
where

z do
K(k) = / @
0 V1—k2sin®0
is the complete elliptic integral of the first kind.

(e) Using the power series expansion
T — (2n)! 2 on
K(k) = b) Z 220 (n])2 k (1.11)
show that for small oscillations (¢o/2 < 1)

T_TO[1+¢—(2J+...]. (1.12)
16

(f) Estimate the percentage error made in the approximation T' ~ Ty for ¢¢ ~ 60°.

(g) Plot the time period T of Eq. (1.9) as a function of ¢9. What can you conclude about the time period
for ¢pg = w?

3. (20 points.) Assume Earth to be a solid spherical ball of uniform density. Consider a hypothetical tunnel
passing through the center of Earth and connecting two points on the surface of Earth by a straight line.
Determine the time taken, (in minutes) to two siginificant digits, starting from rest, to travel from one
point to the other, when a mass is dropped at one end of the tunnel. Ignore friction and the rotational
motion of Earth. Use the mass of Earth to be 6.0 x 10?*kg, radius of Earth to be 6.4 x 10m. Newton’s
gravitational constant is 6.67 x 10711 Nm? /kg?.

A more realistic density profile of Earth is

po, for r< %,
r)= 1.13
o(r) {%po, for §<T<R, ( )
where
16 M
PO= T Im o3 (1.14)
9 FR3

where R is the radius of Earth and M is the mass of Earth. Show that the above density profile leads to
the following profile for the gravitational field for Earth,

16 GMr

_§F7 for r<

57
2
g(r) = _8GM1 %4_ R
9 RZ2|R 2r
GM

_7‘—27 for R<T,

R
, for §<T<R, (1.15)
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where G is Newton’s gravitational constant. Plot g(r) as a function of r. Approximate the above gravi-

tational field as
GM 2r

_?E, for T<§,
M
g(r) = —2—2, for §<’I‘<R, (1.16)
GM
-—— for R<r.
r

Plot the approximate gravitational field and compare it with the exact version. Argue that it is accurate
to about ten percent. Determine the new time taken, (in minutes) to two siginificant digits, starting from
rest, to travel from one point to the other, when a mass is dropped at one end of the tunnel. Ignore
friction and the rotational motion of Earth.

Refer: The gravity tunnel in a non-uniform Earth, by Alexander R. Klotz, Am. J. Phys. 83 (2015) 231;
arXiv:1308.1342.

1.2 Velocity dependent forces

1. (20 points.) Consider the case when the friction force is quadratically proportional to velocity,

1
Fy = §DpAU2, (1.17)

where A is the area of crosssection of the object, p is the density of the medium, and D is a dimensionless
drag coefficient. This should be contrasted with the case when the drag is linear in velocity. Typically,
for small speeds, or when the size of the object is small, the drag force is linear in velocity. This is the
case for motion in a highly viscous fluid, or for micron sized organisms in water. On the other hand, a
sky diver, or a car on an interstate, experience quadratic drag forces.

(a) For a mass m falling under uniform gravity we have the equation of motion

dv
— = — Fy. 1.18
m = mg — Iy (118)

(b) Show that the terminal velocity, when dv/dt = 0, is given by

[2mg

(¢c) Solve the equation of motion for the initial condition where the particle starts from rest, v(0) = 0,
and show that it leads to the solution

(1.20)

where 7 = vy /g sets the scale for time.

(d) The corresponding solution for linear drag is

o(t) :vT(1—e*%), (1.21)

where now Fy = bv and vy = 52 with 7 = vp/g. Plot and compare the two velocity functions

assuming the same terminal velocities.

2. (20 points.) Electric charge in a uniform magnetic field. Refer 20210121 video.


http://aapt.scitation.org/doi/full/10.1119/1.4898780
https://arxiv.org/abs/1308.1342
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3. (20 points.) Motion of a charged particle of mass m and charge ¢ in a uniform magnetic field B and a
uniform electric field E is governed by

d
md—‘tfqu—i—qva. (1.22)

Choose B along the z-axis and E along the y-axis,
B = 0i+0j+ Bk, (1.23a)
E=0i+Ej+0k (1.23b)

Solve this vector differential equation to determine the position x(¢) and velocity v(t) of the particle as a
function of time, for initial conditions

x(0) = 0i+0j+ 0k, (1.24a)
v(0) = 0i4+0j+0k. (1.24b)

Verify that the solution is a cycloid characterized by the equations

x(t) = R(wet — sinwet), (1.25a)
y(t) = R(1 — coswet). (1.25b)
where 5 B
q
_ = 1.26
o YT (1.26)

The particle moves as though it were a point on the rim of a wheel of radius R perfectly rolling (without
sliding or slipping) with angular speed w. along the x-axis. It satisfies the equation of a circle of radius R
whose center (vt, R,0) travels along the a-direction at constant speed v,

(x —vt)* + (y — R)* = R?, (1.27)

where v = w.R.



Chapter 2

Calculus of variations

2.1 Functional derivative

1. (20 points.) Give an account of the functional derivative

Observe that dimensional consistency requires

|: :|
(;u(.r) uj|xr
2. (20 pOlntS.) Evahlate the funCtl()nal derl\/atl\/e

0 F [u)
du(x)

of the following functionals, assuming no variation at the end points.

(a)
Flu] = / dz a(x)u(x)

1

(b)

Z2

F[u]:/m dxu(zr)?

1

()
du(x)

Flu] = / m dz a) =

3. (20 points.) (Gelfand and Fomin, Calculus of Variations.) Evaluate the functional derivative

dF[y]
5y ()

of the following functionals, assuming no variation at the end points.

(a)
Fly] 2/0 dw%

(2.8)
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@ 1
_ dy
P = [ oy (29)
© 1
F[y]z/ d:mcy;l—y (2.10)
0
(@ b 2
de (d
o= [ % (%) (2.11)
4. (20 points.) Evaluate the functional derivative
0 F [u)
Sulo) (2.12)

of the following functionals, assuming no variation at the end points. Given a(x) is a known function.

(a)

2 u(x 2u(z Bu(z

Flu] :/ dz a(x) [14— dd(x) + dd:z:(Q ) + ddx(3 )} (2.13)
(b)

F[]/bd; (2.14)

u| = ’ T yom )
(14—@)

(c)

F[u]:/bdxf\/l—i—% (2.15)
(d)

b
du d3u
Flul= | dey/1+ 2+ 22 2.1
] LI”+m+m3 (2.16)

5. (20 points.) Evaluate the functional derivative

W x]
dx(t)

(2.17)

of the following functionals, assuming no variation at the end points.

(a) Let x(t) be position at time ¢ of mass m. The action
21 dz\”
Wiz| = dt = — 2.18
o) = [ argm (%) 219

(b) Let z(t) be the vertical height at time ¢ of mass m in a uniform gravitational field g. The action

wie = [t 3 (5) - e 219

is a functional of the vertical height.

is a functional of position.
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(¢) Let r(t) be the radial distance at time ¢ of mass m released from rest in a gravitational field of a
planet of mass M. The action

bz 1 dr\? GMm
Wir] = dt | = —
[ /t1 [2 m ( dt > + T

is a functional of the radial distance.

(2.20)

(d) Let r(t) be the radial distance at time ¢ of charge g; of mass m released from rest in an electrostatic
field of another charge of charge ¢g2. The action

t2 1 dr\” 1 qiq

is a functional of the radial distance.

6. (20 points.) Let us investigate the fundamental identity of functional differentiation,

5/ (x) /
=d(x — 2.22
5o = Oz =), (2:22)
in the context of Fourier tranformation
< dk .~
fa) = [ et i, (2234)
k) = / da = f (). (2.23D)
Observe that the above Fourier transformation implies the d-function representation
© dk /
§(z — ') :/ — ihle—a) (2.24)
oo 2m
Interpreting Eq. (2.23a) as a functional in f show that
0f(x) _ 1 ik, (2.25)
of(k) 2w

Similarly, interpreting Eq. (2.23b) as a functional in f show that

5f~(k) _ e*ikx
) . (2.26)

Using these results in the functional chain rule

Sf(x) [ . 0f(x) of(k)
/700 dak 5f(k)of(z)

(2.27)

6f (')
obtain the fundamental identity in Eq. (2.22).
7. (20 points.) The eletrostatic energy of a charge distribution p(r) is
Elp] = %/dgr/dgr’%. (2.28)
Evaluate
FE

5o 0R() (2.29)
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10.

11.
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. (20 points.) Consider the action, in terms of the Lagrangian viewpoint,

= [t o (5) <00

Assume no variation at the end points ¢; and t2. Evaluate the functional derivative

oW

ox(t)’

. (20 points.) Consider the action, in terms of the Hamiltonian viewpoint,

to 2
W[x,p]:/ dt[p-d—x—p——U(x,t) .
ty

Assume no variation at the end points ¢; and to. Evaluate the functional derivatives

ow ow

—— and .
ox() T Sp(t)
(20 points.) Consider the action, in terms of the Schwingerian viewpoint,

2 d 1
W[x,p,v]:/ dt [p.(d_}t{—v)+§mvz—U(x,t) .
t1

Assume no variation at the end points ¢; and to. Evaluate the functional derivatives

ow ow oW

=) v M Spny

(40 points.) Consider the following construction in a field theoretical setup

WIK] = %/dw/dw’K(m)Aﬂx — K@),

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

where W is the action written in terms of a source function K (x) and the Green’s function A(|z — 2']).
Determine the relation between the corresponding field ¢(x) and the source, by evaluating the functional

derivative SW
Show that the Green’s function satisfies
2w
Allz —2|) = ——r——.
(= =2') = SRR @)
Construct the partition function
Z[K] = eWIK]
Show that
(a) the field satisfies
1élnZz
9(z) = i 0K (x)
(b) and the Green’s function is given by
11 82z
Alz —a']) =

i Z 6K (x)0K (¢') Ko

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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12. (40 points.) Consider the functional

Wiz = / "t L ) (2.42)

t1

constructed out of the function x = x(t) and its derivative & = dz/dt. In particular, let

%_f; —0 (2.43)
(a) Show that
gi[{g - B_i - %g—ﬂ + {6(t —ty) — 8(t — tl)] Z_j (2.44)
(b) Further, show that
o) ool o

This property used with the extremum principle, is the essence of the Beltrami identity. This also
gives us a glimpse of the Legendre transform,
.OL

H=222_1. 2.4
T oi (2.46)

2.2 Fermat’s principle

1. (20 points.) Fermat’s principle in ray optics states that a ray of light takes the path of least time between
two given points. The speed of light in a medium is given in terms of the refractive index

< (2.47)

n=—
v

of the medium, where c is the speed of light in vacuum and v is the speed of light in the medium. Consider
a ray of light traversing a path from (x1,y1) to (z2,y2) in a plane of fixed z.

(xlay1)|

Figure 2.1: Problem 1.

(a) Show that the time taken to travel an infinitesimal distance ds is given by

=38 _nds, (2.48)

v C

where ds in a plane is characterized by the infinitesimal statement

ds® = dz? + dy?. (2.49)
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(b) Fermat’s principle states that the path traversed by a ray of light from (z1,y1) to (z2,y2) is the
extremal of the functional

1 (w27y2) 1 T2 d 2
T[y]*—/ nds:—/ dx n(x) 1+<—y> .
€ J(z1,0) € Jay dx

(2.50)

(c) Since the ray of light passes through the points (21,y1) and (z2,y2), we do not consider variations
at these (end) points. Thus, show that

()7
T 1d mr) o
W 1d ) e | (2.51)
oy(x) cdx du\ 2
14+ (Y
dx
(d) Using Fermat’s principle show that the differential equation for the path y(z) traversed by the ray
of light is
()7
n(z)==
dx

(2.52)
()

where ng is a constant. Show that the above equation can be rewritten in the form

dy no
= 2.53
o~ Jn@r = (25

(e) Let us consider a medium with refractive index (a;

1, z<a,
n(z) =< x

2.54
- a<uz. ( )
a
Solve the corresponding differential equation, by substituting x = nga cosht, to obtain

1
y(x) — yo = noacosh™ (-E) ;

a<czx.
Nog a

(2.55)

The path in this medium satisfies the equation of a catenary. It is also useful to express the solution
in terms of the logarithm as

1 1z)”
y(z) — yo = noaln —Z4 (—£> =17, a <. (2.56)
ng a ng a
For initial conditions
d
y(z1) =10 and dy = (2.57)
£ T=T1
show that integration constants are determined as
!
o=y and ng=——2

- (2.58)
2
/14y,
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Thus, write the solution as

1z 1 22
—— 51
no a ng a
y(z) —y1 = npaln 1 i ) a<z. (2.59)
— 44/ -1
no us
For the special case y; = 0 and y} — oo show that ng =1 and
—am |® 2
y(xz) =aln E—i— ﬁ_l , a <z (2.60)

Evaluate the total time taken for light to go from (x1,y1) to (z,y(z)).
Solution:

2 3 _ 2,2 2 1 1
=" |1, VA + = 127 —1-— /= -1], a < . (2.61)
c 2 a++/a? —n2a? noa \| nga? ng \l ng

2. (20 points.) Fermat’s principle in ray optics states that a ray of light takes the path of least time between
two given points. The speed of light in a medium is given in terms of the refractive index

n=-, (2.62)

v
of the medium, where c is the speed of light in vacuum and v is the speed of light in the medium. Consider
a ray of light traversing a path from (x1,y1) to (z2,y2) in a plane of fixed z.

(07 x1+ yl)

(z2,92)

I
?—_
I
I
I
I
I
I
I
I
I
I
I
I
: (21,91)

Figure 2.2: Problem 2.

(a) Show that the time taken to travel an infinitesimal distance ds is given by

d d
ar =2 = (2.63)
v C

where ds in a plane is characterized by the infinitesimal statement
ds® = dz? + dy?. (2.64)

(b) Fermat’s principle states that the path traversed by a ray of light from (z1,y1) to (z2,y2) is the
extremal of the functional

(z2,y2) 2 2
Tly] = 1/ nds = l/ dxn(x)y 1+ <%> . (2.65)
( T

¢ Z1,Y1) ¢ x1
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Since the ray of light passes through the points (z1,y1) and (x2,y2), we do not consider variations
at these (end) points. Thus, show that

dy
Tl _ 14| "Wg | (2.66)

Sy(z) cdx 1 (dy)z
+ -
dx

Using Fermat’s principle show that the differential equation for the path y(z) traversed by the ray
of light is
dy

——————éﬁl—z-::no, (2.67)
dy
1 _Z

where ng is a constant. Show that the above equation can be rewritten in the form

n(z)

d
e (2.68)
dz n(z)? —ng
Let us consider a medium with refractive index (z; = a)
g, O0<zx<a,
n(z)={2 (2.69)
1, a<uz.
Solve the corresponding differential equation to obtain
1 2 2
y(z) —yo = — \/a2 —niz? — \/a2 —n3a?|, z < a. (2.70)
no

The path in this medium satisfies the equation of a circle. Determine the radius of the circle to be
a/no and the location of the center to be (0,yo — ay/(1/ng) — 1). For initial conditions

dy
dzx

y(z1) = and =y (2.71)

r=x1

show that the integration constants are determined to be

/

Y1
V1+i2
For the special case when y; = 0 and y} — oo show that ng =1 and

y(z) = Va2 — 22, z < a. (2.73)

Evaluate the total time taken for light to go from (z1 = a,y1 = 0) to (z2 = 0,y2 = a).

Yyo=y1  and  ng= (2.72)

To do: Check for a sign in the solution for y. Further, should yj — —oco? Refer solutions to MT-01
in Spring 2020.

Solution:

The time taken is given by

0 2 1
dy . dt 1
T = —/a den(z)y/1+ <£> = a;l_I)I(IJA TAE (2.74)
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The negative sign in the expression corresponds to velocity being negative. This yields
0
1+vV1-062

which diverges logarithmically. Thus, the light takes infinite time to reach the point (0, a) from (a, 0).

T =—aln ( ) ~a(ln2 —Ind), (2.75)

2.3 Geodesics on surfaces

1. (20 points.) Let us prove the intuitively obvious statement that the curve of shortest distance going
through two points (x1,y1) and (z2,y2) in a plane, the geodesics of a plane, is a straight line passing
through the two points.

(a) The distance between two points in a plane is characterized by the infinitesimal statement
ds* = dz® + dy?. (2.76)
(b) The geodesic is the extremal of the functional

l[y]z/(m v ds—/ 1+ dy (2.77)

Z1,Y1)

(¢) Since the curve passes through the points (z1,y1) and (za, yg) we have no variations at these (end)
points. Thus, show that

dy
ol d T
1v] =—— dix . (2.78)
dy(zx) dx d
14+ (&
dx
(d) Using the extremum principle show that the differential equation for the geodesic is
dy
- = 2.79
dx “ ( )

where c is a contant.

(e) Solve the differential equation to identify the equation of a straight line in a plane. Find c.

2. (20 points.) Find the geodesics on the surface of a circular cylinder. Identify these curves. Hint: To
have a visual perception of these geodesics it helps to note that a cylinder can be mapped (or cut open)
into a plane.

(a) The distance between two points on the surface of a cylinder of radius a is characterized by the

infinitesimal statement
ds? = a’d¢? + dz°. (2.80)

(b) The geodesic is the extremal of the functional

(p2,22) b2
l[z] = / ds = / adgy |1 + l;l_z (2.81)
¢1 Zl) 1 ¢

(c) Since the curve passes through the points (z1,¢1) and (z2,¢2) we have no variations on the end
points. Thus, show that
1dz

ole) 4| __adp | (2.82)
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(d)

(e)
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Using the extremum principle show that the differential equation for the geodesic is
1dz
-—— = 2.83
adp  © (2.83)
where c is a contant.

Solve the differential equation. Identify the curves described by the solutions. Illustrate a particular
curve using a diagram. Solution: z = ca¢ + co. Helix.

3. (20 points.) Show that the geodesics on a spherical surface are great circles, that is, circles whose centers
lie at the center of the sphere.

(a)

(b)

The distance between two points on the surface of a sphere of radius a is characterized by the
infinitesimal statement

ds® = a®d? + a” sin® 0dp>. (2.84)

The geodesic is the extremal of the functional

(027¢2) 02 d¢ 2
1[¢]:/ dSZ/ adf 1+sin26‘(—> . (2.85)
(01,91) 01 do

Since the curve passes through the points (61, ¢1) and (62, ¢2) we have no variations on the end
points. Thus, show that

sin? 9@
1otlel __d df . (2.86)

adp() —  do 2
\/1 + sin? 0 (%)

Using the extremum principle show that the differential equation for the geodesic is

dp

c
g sin 0+/sin’ 9 — 2’

(2.87)

where c¢ is an arbitrary constant.

Solve the differential equation to obtain the equation of geodesic as
sin(¢gg — ¢) = écot b, (2.88)

where ¢ = ¢/v1 — ¢2, and ¢y is a constant of integration.
Hint: Express the right hand side in terms of cscf and cot 8, then substitute for cot 6.

Rewrite the equation of the geodesic in the form
— sin ¢ sin 6 cos ¢ + cos ¢g sin fsin ¢ + ¢cosf = 0. (2.89)

Interpret this to be an equation of plane passing through the origin. The condition that this plane
has to pass through the two given points determines the constants ¢ and ¢, which we shall not
attempt here.

4. (20 points.) Find the geodesics on the surface of a cone with opening angle 6.
Hint: To have a visual perception of these geodesics it helps to note that a cone can be mapped (or cut
open) into a plane.
Solution:

To

 sin(sinf(é — go))’

() (2.90)

5. (20 points.) Find the geodesics on the surface of a circular cylinder.
Solution: Helix.

2(¢) = c1o + ca. (2.91)
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2.4 Brachistochrone on surfaces

6. (60 points.) Consider a rope of uniform mass density A = dm/ds hanging from two points, (z1,y1) and
(z2,y2), as shown in Figure2.3. The gravitational potential energy of an infinitely tiny element of this

(ilfz,yz)

(21,91)

Figure 2.3: Problem 6.

rope at point (z,y) is given by
dU = dm gy = Agds y, (2.92)

where
ds® = dx® + dy?. (2.93)

A catenary is the curve that the rope assumes, that minimizes the total potential energy of the rope.

(a) Show that the total potential energy U of the rope hanging between points 1 and x5 is given by

(w2,y2) Y2 dr\ 2
Ulz] = )\g/ yds = )\g/ dyy\/1+ (—) . (2.94)
(w1,51) Y1 dy

(b) Since the curve passes through the points (x1,y1) and (z2,y2), we have no variations at these (end)
points. Thus, show that

dx
oU d dy
ULl _ g4 |yt (2.95)
ox(y) dy dr\ 2
1 e
i ( dy )
(¢) Using the extremum principle show that the differential equation for the catenary is
dx a
_— = 2.96
&= T (2.96)
where a is an integration contant.
(d) Show that integration of the differential equation yields the equation of the catenary
y = acosh 2—22 (2.97)
a
where z( is another integration constant.
(e) For the case y1 = y2 we have
N coshu, (2.98a)
a a
Y2 _ cosh 22T xo, (2.98b)
a a
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which leads to, assuming z; # x2,

v = 2 ;m. (2.99)
Identify z in Figure2.3. Next, derive
NP2 osh 2L (2.100)
a a 2a

which, in principle, determines a. However, this is a transcendental equation in a and does not allow
exact evaluation of a, and one depends on numerical solutions. Observe that, if x = z¢ in Eq. (2.97),
then y = a. Identify a in Figure2.3.

7. (20 points.) A catenary is the curve that an idealized hanging chain assumes under its own weight when
supported only at its ends in a uniform gravitational field. It is the curve y(z) that minimizes the potential

energy U of the hanging chain
M
U= /dU = /dmgy: ?g/yds, (2.101)

where M is the mass of the uniform chain, P is the length of the chain, ¢ is the acceleration due to gravity.
Let us assume the two end points of the chain are at the same height. A catenary is given by

y = acosh f, (2.102)
a

where the parameter a, an integration constant, characterizes the catenary. Find the relation between the
parameter a, the perimeter length P of the chain, and the height yq.

(a) Determine the perimeter length P of the hanging chain using
Zo
P= / ds. (2.103)
o

(b) Show that the relation between the parameter a, the perimeter length P of the chain, and the height
Yo in Figure 2.4 is given by

a=/y2 - (5)2 (2.104)

(¢) Show that the distance zg is given by

P
2o = acosh™ %’ =aln <%° + %) . (2.105)

Show that in the limit a — 0 xg — 0. This corresponds to the case yo — P/2.

Figure 2.4: Problem 7.
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8.

10.

(20 points.) A catenary is described by

y = acosh (w—:m) , (2.106)

a

where constants a and zg are determined by the position of the end points (x1,y1) and (x2,y2). Let us
choose rg = 0 and a = 1 such that
y = coshz, (2.107)

where x and y are dimensionless variables.

(a) Using series expansion show that
2

amhx:]m+%;+m.” (2.108)

(b) The parabola y = 1+ 22/2 hugs the catenary at z = 0, but it does not pass through the end points.

Consider the parabola
y:1+%ﬁ (2.109)

that also hugs the parabola at x = 0. Determine « such that this parabola passes through x = £1.
Choose this parabola to be an approximation for the catenary. Plot this parabola and the catenary in
the same plot for —1 < # < 1 and estimate the maximum deviation (with sign) in this approximation.
Does the parabola sag below the catenary, or is it the other way around.
Solution: « = (cosh(1)—1) ~ 1.08616. Maximum deviation is -0.010 (about 1%). Thus, the parabola
sags below the catenary.

. (20 points.) (Based on Problem 7 in Chapter 2 of Goldstein, 2nd edition.) Catenoid: A rope of uniform

linear mass density and indefinite length passes freely over pulleys at equal heights y; = y2, above the
surface of Earth, with horizontal distance xo — 1 between them. (Assume uniform gravitational field.)
Determine the curve followed by the rope hanging between the pulleys. Compare (using plots) the catenoid
and a parabola.

(20 points.) Write a brief summary on the Isoperimetric problem, and problem of minimum surface of
revolution. For example, refer Goldstein, Chapter 2.

A related note: A gyroid is an infinitely connected triply periodic minimal surface discovered by Alan
Schoen, who is a retired faculty of the Math department in STUC and currently a resident of Carbondale.



22

CHAPTER 2. CALCULUS OF VARIATIONS



11.

12.

13.

14.

Chapter 3

Hamilton’s principle

3.1 Euler-Lagrange equation

(20 points.) (Refer Goldstein, 2nd edition, Chapter 1 Problem 8.) As a consequence of the Hamilton’s
stationary action principle, the equations of motion for a system can be expressed as FKuler-Lagrange
equations,

) (3.1)

in terms of a Lagrangian L(z,&,t). Show that the Lagrangian for a system is not unique. In particular,
show that if L(x,1,t) satisfies the Euler-Lagrange equation then

L 1) = L, 1) + T t) (3.2)

where F'(z,t) is any arbitrary differentiable function, also satisfies the Euler-Lagrange equation.

(20 points.) A mass m; is forced to move on a vertical circle of radius R with uniform angular speed
w. Another mass my is connected to mass m; using a massless rod of length a, such that it is a simple
pendulum with respect to mass m;. Motion of both the masses is constrained to be in a vertical plane in
a uniform gravitational field.

(a) Write the Lagrangian for the system.

(b) Determine the equation of motion for the system.

(¢) Give physical interpretation of each term in the equation of motion.

(20 points.) A system, characterized by the parameters w, «, and 3, and the dynamical parameter 6, is
described by the equation of motion

0 + w?sin + af cos 0 + 36 sin b = 0. (3.3)
Write the above equation of motion in the small angle approximation, to the leading order in 6.

(20 points.) A pendulum consists of a mass ms hanging from a pivot by a massless string of length a.
The pivot, in general, has mass mq, but, for simplification let m; = 0. Let the pivot be constrained to
move on a horizontal rod. See Figure 14. For simplification, and at loss of generality, let us chose the
motion of the pendulum in a vertical plane containing the rod.

(a) Determine the Lagrangian for the system to be

. 1 1 . .
L(z,%,60,0) = §m2:'c2 + §m2a292 + maaif cos  + maga cos . (3.4)

23
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(b)
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Figure 3.1: Problem 14.

Evaluate the following derivatives and give physical interpretations of each of these.

oL ) .

a5 = med + moab cos b, (3.5a)
oL

- _ .5b
P 0, (3.5b)
8_L. = maa®0 + myad cos b, (3.5¢)
90

g—g = —mgaifsinh — mogasin. (3.5d)

Determine the equations of motion for the system. Express them in the form

i+ af cos§ — af?sinf = 0, (3.6a)

a4 #cosf + gsinf = 0. (3.6b)

Observe that, like in the case of simple pendulum, the motion is independent of the mass mo when
my = 0.

In the small angle approximation show that the equations of motion reduce to

i+ af =0, (3.7a)
ab + i+ gb = 0. (3.7b)

Determine the solution to be given by
=0 and &=0. (3.8)

Interpret this solution.
The solution 6 = 0 seems to be too restrictive. Will this system not allow 6 # 07 To investigate this,
let us not restrict to the small angle approximation. Rewrite Egs. (3.6), using Eq. (3.6a) in Eq. (3.6b),
as
i+ af cos § — ab?sin 6 = 0, (3.92)
sin 6 |afl sin 6 + af? cos 0 + g} = 0. (3.9b)
In this form we immediately observe that § = 0 is a solution. However, it is not the only solution.

Towards interpretting Egs. (3.9) let us identify the coordinates of the center of mass of the mi-mq
system,

(m1 + ma)Tem = mix + ma(x + asinb), (3.10a)

(m1 4+ m2)Yem = —maacosb, (3.10Db)
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which for m; = 0 are the coordinates of the mass mso,

Zem = & + asinb, (3.11a)
Yem = —aCOS 0. (3.11b)
Show that
fem = &+ ab cosb, (3.12a)
Jem = absin o, (3.12b)
and
Fem = @ + ab cosf — ab? sin 6, (3.13a)
Yem = afsin 0 + ab? cosh. (3.13b)

Comparing Eqgs. (3.9) and Egs. (3.13) we learn that

Zem = 0, (3.14a)
sin @ [ym n g} = 0. (3.14D)
Thus, Jem = —g is the more general solution, and # = 0 is a trivial solution.

(f) Let us analyse the system for initial conditions: (0) = 6y, 6(0) = 0, £(0) = 0. Show that for this
case Tem(0) = 0 and

1
a(cos@ — cosby) = 59152. (3.15)

Plot 6 as a function of time t. Interpret this solution.

(g) To do: The interpretation does not seem satisfactory. Is m; = 0 physical here?

15. (20 points.) A pendulum consists of a mass ms hanging from a pivot by a massless string of length as.
The pivot, in general, has mass mq, but, for simplification let m; = 0. Let the pivot be constrained to
move on a frictionless hoop of radius a;. See Figure 15. For simplification, and at loss of generality, let
us chose the motion of the pendulum in the plane containing the hoop.

Figure 3.2: Problem 15.

(a) Determine the Lagrangian for the system to be

L(@l, 91, 92, 92) = §m2a%9%—|—577’1,20,%9%4—77120,1&29192 cos(91—92)—|—nga1 COSs 91 +m29a2 COS 92. (316)



26

CHAPTER 3. HAMILTON’S PRINCIPLE

(b) Evaluate the following derivatives and give physical interpretations of each of these.

oL
90,
oL
90,
oL
905
oL
905

mga%‘l + moaiasfs cos(fy — 62), (3.17a)
—moai a6 sin(f; — 63) — magay sin 0y, (3.17b)
m2a§9'2 + moayasb cos(fy — 62), (3.17¢)
moayasf Oz sin(f; — 03) — magas sin s. (3.17d)

(¢) Determine the equations of motion for the system. Express them in the form

where

01 + wisinf; + %6‘2 cos(fy — 62) + %9% sin(6, — 62) = 0, (3.18a)
Oy + w3 sin By + B0 cos(fy — B2) — B3 sin(f; — 62) = 0, (3.18b)
2_ 9 2_ 9 ﬂfﬂfw_% (3.19)

LT Ty Cay Wi '

Note that § is not an independent parameter. Also, observe that, like in the case of simple pendulum,
the motion is independent of the mass ms when m; = 0.

(d) In the small angle approximation show that the equations of motion reduce to

(e) Determine the solution for the initial conditions

él + wf@l + %92 =0, (3.20&)
éz + w§92 + ﬁ@l = 0. (3.20b)
01(0) = 05(0) = B0, 01(0) = 65(0) = 0. (3.21)

Interpret and expound your solution.

16. (20 points.) Counsider the coplanar double pendulum in Figure 16.

\

~
AN
I
\ N’
/
\ 0 mi
N\
N

7/

v mo

Figure 3.3: Problem 16.

(a) Write the Lagrangian for the system. in particular, show that the Lagrangian can be expressed in

the form

L=1Ly+ Ly + Ling,

(3.22)
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where
1 .
L, = §(m1 +ma)aib: + (my +ma)gay cos by, (3.23a)
1 .
Lo = §m2a§9§ + magas cos b, (3.23b)
Lint = mgalagélég COS(91 — 92) (323C)

(b) Determine the equations of motion for the system. Express them in the form

(mq + mg)alél + (m1 4+ ma)gsinby + Maasbs cos(fy — 62) + mgagég sin(f; —63) =0, (3.24a)
a205 + gsin by + a16; cos(f1 — 62) — aléf sin(f; —63) =0 (3.24b)
(¢) In the small angle approximation show that the equations of motion reduce to
by + w20, + %9'2 =0, (3.25a)
by + w36y + 56, = 0, (3.25b)
where )
wf:ail, w%:a%, :mlﬂme, 5:2—2:2—? (3.26)
Note that 0 < o < 1.
(d) Determine the solution for the initial conditions
0:(0) =0, 65(0)=0, 6,(0)=0, 62(0)=wo, (3.27)
fora =1/2 and g = 1.
3.2 Lagrangian multiplier
1. (20 points.) Counsider the function describing a paraboloid
fla,y) = a(a® + 7). (3.28)
A straight line on the xy plane, y = mx + ¢, can be interpreted as a condition of constraint
9(z,y) =y —ma —c=0. (3.29)
Let us determine the point on the line where the function f(x,y) has an extremum value.
(a) Construct the function
F(z) = f(x,mx + ¢). (3.30)

Using the extremum principle, dF'/dx = 0, show that the point on the line where the function f is

an extremum is
me c

(b) Construct the function
hz,y) = fz,y) + Ag(2,y). (3.32)
Evaluate Vh, V f, and Vg. Show that Vh = 0 implies
A A
P (3.3)

2’ 2a
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Use this in the condition of constraint to derive

2ac

A= o
1+ m?2

(3.34)

Use the above expression for A in Eq. (3.33) to find the point on the line where the function f is an
extremum.

2. (20 points.) Spherical pendulum: Consider a pendulum that is suspended such that a mass m is able to
move freely on the surface of a sphere of radius a (the length of the pendulum). The mass is then subject
to the condition of constraint

1
F = 5(1:2 +y? + 2% —a?) =0, (3.35)
where the factor of 1/2 is introduced anticipating cancellations. Consider the Lagrangian function

2

L(r,r) = §mi‘ —mgz — A\F. (3.36)

(a) Evaluate the gradient V of the condition of constraint. Show that
VF =r. (3.37)
(b) Using the Euler-Lagrange equations derive the equations of motion
mi = —mgz — Ar. (3.38)
(c) Derive an expression for A. In particular, show that it can be expressed in the form
—Ada=r1-N. (3.39)

Find N. Give the physical interpretation of IN using D’Alembert’s principle.

(d) Show that the angular momentum L = r x p, where p = mr is the momentum of the particle, about
the z-axis is conserved. That is,

d
~(z-L)=0. 3.40
Z(-1) (3.40)
Show that this also implies the conservation of the areal velocity
as 1
22— e — yi 41
o = 5@y —yi), (3.41)
where S is the area swept out.
(e) Show that
dF
Using this derive the statement of conservation of energy,
dH 1
o = 0, H= Emi'2 + mgz, (3.43)

starting from the equation of motion in Eq. (3.38) and multiplying by r.

3. (20 points.) A (spherical) pendulum is suspended such that a mass m is able to move freely on the surface
of a sphere of radius a (the length of the pendulum). The spherical pendulum is suitably described by the
Lagrangian function

L(r,v) = 2mo? P R P (3.44)
r,v)=-mv-—mgz+—-|— — T .

3 2 g 2 a2 3

where r is the position vector with center of sphere as origin and v = dr/dt. Assume the acceleration due
to gravity is downward, such that g = —gz. Derive an expression for T. In particular, give the physical

interpretation of T.
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Figure 3.4: Problem 4.

4. (20 points.) Consider a wheel rolling on a horizontal surface. The following distinct types of motion are
possible for the wheel:
x < OR, slipping (e.g. in snow),
x =0R, perfect rolling, (3.45)
x > 0R, sliding (e.g. on ice).

Differentiation of the these relations leads to the characterizations, v < wR, v = wR, and v > wR,
respectively, where v = & is the linear velocity and w = 0 is the angular velocity. Assuming the wheel is
perfectly rolling, at a given instant of time, the tendency of motion could be to slip, to keep on perfectly
rolling, or to slide.

Deduce that while perfectly rolling the relative motion of the point on the wheel that is in contact with
the surface with respect to the surface is exactly zero. Thus, conclude that the force of friction on the
wheel is zero. The analogy is a mass at rest on a horizontal surface. However, while perfectly rolling, it
is possible to have the tendency to slip or slide without actually slipping of sliding. The analogy is that
of a mass at rest under the action of an external force and the force of friction. In these cases the force of
friction is that of static friction and it acts in the forward or backward direction.

In the following we differentiate between the following:

(a) Tendency of the wheel is to slip (without actually slipping) while perfectly rolling.
(b) Tendency of the wheel is to keep on perfectly rolling.
(¢) Tendency of the wheel is to slide (without actually sliding) while perfectly rolling.

Deduce the direction of the force of friction in the above cases. Determine if the friction is working against
linear acceleration or angular acceleration.

Perfect rolling involves the contraint x = 6 R. Thus, using the D’ Alembert’s principle and idea of Lagrange
multiplier we can write the Lagragian for a perfectly rolling wheel on a horizontal surface to be

L(x,i,0,0) = %m;ﬁ + %IéQ — Fy(x — 0R), (3.46)

where m is the mass of the wheel, I is the moment of inertia of the wheel, and Fy is the Lagrangian
multiplier. Using D’Alembert’s principle give an interpretation for the Lagrangian multiplier Fs. What is
the dimension of F? Infer the sign of Fy for the cases when the tendency of the wheel is to slip or slide
while perfectly rolling.

5. (20 points.) Consider two discs of radii 71 and 72, and moment of inertia Iy and I». Disc 1 is free to
roll about an axis parallel to z axis passing through its center O;. Similarly, disc 2 is free to roll about
an axis parallel to z axis passing through its center Os. Further, the center of disc 2 is free to move on a
circle of radii (r1 + 72). Let I3 be the moment of inertia of disc 2 about the axis passing through O;. See
Figure 5. Assume gravity in the direction of z axis and no motion in the z direction so that gravity effects
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are irrelevant. The two discs are in contact with sufficient friction between them such that the resultant
motion leads to perfect rolling of the surfaces,

917”1 = 927”2. (347)

Here 61 and 6 are angular displacements of the respective discs about the axes O; and O3. Further, the
angular displacement of the axis Oy about the axis O; is parametrized by the angular displacement .
Assume the discs are rolling under the action of no external torques.

(a)

Figure 3.5: Problem 5.

Show that the Lagrangian for this system in terms of the coordinates #; and «s, and their derivatives,
is

. 1. 1. 1
L(@l, 01, o, dz) = 5[19% + 51295 + 5[3@% (3.48&)
1 T% ) 1 )
=3 (]1 + Izg) 07 + 513%, (3.48b)
where the equation of contraint has been used to replace #>. Determine the equations of motion to
be
r2\
I + Iz—2 fL =0 (3.49)
T3
and
Isais = 0. (3.50)

These imply 6, = 0 and c» = 0 in the absence of external torque.

Show that the Lagrangian for this system in terms of the coordinates 61, f2, and «s, and their
derivatives, is

. . 1. 1. 1
L(61,01,02,02, 2, 2) = 5119% + 51295 + 513642 + A(0171 — Oara), (3.51)
where the contraint has been introduced with Lagrange multiplier A\. Determine the equations of
motion to be
L6, = \ry, (3.52a)
Izéz = —)\Tg, (352b)
0. (3.52¢)

I3co
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Combine Egs.(3.52a) and (3.52b) and show that it is consistent with Eq.(3.49).
(¢) Which quantity relates to the Lagrange multiplier A.

(d) In the absence of external torque and ¢y = 0 initially deduce that the center of mass of disc 2 is
stationary.
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Chapter 4

Stationary action principle

4.1 Review of Hamilton’s principle

Problems

1. (30 points.) The motion of a particle of mass m near the Earth’s surface is described by

d
o7 (mv) = —myg, (4.1)

where v = dz/dt is the velocity in the upward z direction.
(a) Find the Lagrangian for this system that implies the equation of motion of Eq. (4.1) using Hamilton’s
principle of stationary action.
(b) Determine the canonical momentum for this system
(¢) Determine the Hamilton H (p, z) for this system.

(d) Determine the Hamilton equations of motion.

2. (30 points.) The motion of a particle of mass m undergoing simple harmonic motion is described by

d
pn (mv) = —kz, (4.2)

where v = dz/dt is the velocity in the = direction.
(a) Find the Lagrangian for this system that implies the equation of motion of Eq. (4.2) using Hamilton’s
principle of stationary action.
(b) Determine the canonical momentum for this system
(¢) Determine the Hamiltonian H (p,x) for this system.
(d) Determine the Hamilton equations of motion.

3. (30 points.) A non-relativistic charged particle of charge ¢ and mass m in the presence of a known
electric and magnetic field is described by

% (mv) = ¢E + gv x B. (4.3)
(a) Using
= VXA, (4.4a)
0A
E=- - — 4.4b
vo- 28 (4.40)
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find the Lagrangian for this system, that implies the equation of motion of Eq. (4.3), to be
1
L(x,v,t) = Emv2 —qp+qv- A, (4.5)

using Hamilton’s principle of stationary action.
(b) Determine the canonical momentum for this system
(¢) Determine the Hamiltonian H (x, p,¢) for this system to be

H(x,p,t) = % (p— qA)* + qo. (4.6)

4. (30 points.) A relativistic charged particle of charge ¢ and mass m in the presence of a known electric
and magnetic field is described by

d mv
E 1_1)2

c2

=qE +gv x B. (4.7

(a) Find the Lagrangian for this system, that implies the equation of motion of Eq. (4.7), to be

2
L(x,v,t) = —mc* /1 — 2—2 —qp+qv-A, (4.8)

using Hamilton’s principle of stationary action.
(b) Determine the canonical momentum for this system

(¢) Determine the Hamilton H(r,p) for this system to be

H(x,p,1) = \/m2c + (p — qA)? 2 + go. (4.9)

5. (20 points.) Verify, by substitution in Eqs. (4.4), that a plausible scalar and vector potential for constant
(uniform in space and time) electric field E and magnetic field B are

¢ = -r-E, (4.10a)
1
A = §B X T. (4.10b)
Thus, show that
qgp—qv-A=—-d-E—pu-B, (4.11)

where d = gr is the electric dipole moment and g = Zr x v = 5L L, with L = r x mv, is the magnetic
dipole moment.

6. (30 points.) The Hamiltonian

1
H(x,p,t) =5~ (P~ gA)” + g0 (4.12)
describes a non-relativistic particle of charge ¢ and mass m in the presence of a known electric and

magnetic field. Find the Hamiltonian equations of motion to be

dx 1

T = E(p—qA), (4133)
d

= = —qV6+q(VA) - (p—qA). (4.13b)

Further, show that the above equations, in conjunction, imples the Lorentz force equation

d
pn (mv) = ¢E +¢gv x B. (4.14)
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7.

10.

(20 points.) Consider the (time independent) Hamiltonian

which satisfies the equations of motion

de OH dp  OH

@y A or (4.16)

Recollect that the Lagrangian, which will temporarily be called the xz-Lagrangian here, is defined by the
construction

dx
L,=p— — H 4.17
P (4.17)
and implies the equations of motion
0L, dp 0L,
— T = = ) 4.18
P=o(@y @ oa (4.18)
Now, define the p-Lagrangian using the construction
dp
L,= —ro H (4.19)

and derive the equations of motion satisfied by the p-Lagrangian.

Comments: The opposite sign in the construction of the p-Lagrangian is motivated by the action principle,
which does not care for a total derivative. You could use a specific Hamiltonian, for example that of a
harmonic oscillator, as a guide.

. (20 points.) Given a Lagrangian L, the Hamiltonian H is given by

dr
H=p-—-L 4.20
p-— —L (4.20)
where p is the canonical momentum. Evaluate
0H
— 4.21
. (421)
where v stands for dr/dt.
. (20 points.) The Hamiltonian is defined by the relation
H(pi,qi,t) = Zpiq'i — L(qi, Gi, 1) (4.22)
Show that IH  OH 5L
= = (4.23)

dt ot ot
Under what circumstances is H interpreted as the energy of the system?

Consider the four-vector x* = (ct,x). Here a = 0, 1,2, 3, such that 2° = ct and x* are the three components
of vector x. The proper time s, that remains invariant under a Lorentz transformation, satisfies

—ds® = —c*dt* + dx - dx. (4.24)

Thus, derive the relation
lds

V2
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where v = dx/dt. The energy E and momentum p of a particle of mass m is defined as

dx®
2
— = (F .
me”—— = (E, pc)
Find the explicit expressions for £ and p in terms of v, ¢, and m. Show that
dz® dre 1
ds ds

and use this to derive E? = p2c? + m2ct.

1 dr\?

(a) Show that principle of stationary action with respect to dr implies Newton’s second law
d’r

me—

dt?

11. (30 points.) Consider the Lagrangian

=-VV.

(b) Show that principle of stationary action with respect to dt implies

d |1 [dr\?

which for a static potential, 9V/dt = 0, is the statement of conservation of energy.

v
ot

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(¢) Show that the invariance of the total time derivative term, that gets contributions only from the end

points, under an infinitesimal rigid rotation
r =r - Jr, dr = dw x r,

implies the conservation of total angular momentum, L =r X p.

(4.31)

12. (40 points.) In terms of the Lagrangian function L(r,v,t) the action functional W{r;t1,ts] is defined as

ta
W[I';tl,tQ] = / dtL(I‘,V,t),

t1

where v = dr/dt.
(a) For arbitrary infinitesimal variations in the path
r(t) =r(t) — or(t),
and infinitesimal general time transformation
f=t—6t(t),

the change in action is given by

SW = /tt dt% [p-ar— H&]

+/t2dt o (M4 O8N gy (08 4OL
. dat ot or dtov )]’

where the canonical momentum and the Hamiltonian are defined as

p=— and H=v-p—1L
ov

respectively.

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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(b) The change in the action due to variations in path is captured in the functional derivative

The change in the action due to time transformation is captured in the functional derivative

oW (dH oL

st \ar Tar

O ) - {5(t—t2) —5(15—151)}1‘1- (4.38)

(¢) In terms of the Hamiltonian the action takes the form

Wir, p:t1,to] = /tz dt [v -p— H(r,p, t)} . (4.39)

ty
(d) Show that for for arbitrary infinitesimal variations in coordinate and momentum
F(f) = x(t) — or(t) and B(t) = p(t) — Ip(t), (4.40)

and infinitesimal general time transformation, the change in action is given by

SW = /tt dt% [p or — H(St}

t2 dH OH dp OH dr  OH

13. (20 points.) In terms of the Lagrangian function L(r,v,t) the action Wr;t,ts] is defined as

12
Wiesty, to] = / dt L(r, v, 1), (4.42)

ty

where v = dr/dt. Find the change in the action under an infinitesimal general time transformation
t=1t—0t(t), dt(t1) =0, dt(t1)=0. (4.43)

In paticular, evaluate the functional derivative

ow
— 4.44
at(t) (444)
for the variation 0t(t) satisfying the constraints of Eq. (4.43).
4.2 Symmetry and conservation principles
14. (20 points.) Counsider infinitesimal rigid translation in space, described by
or=20de¢, op=0, ot=0, (4.45)

where de is independent of position and time.

(a) Show that the change in the action due to the above translation is

SW 2 9H

1
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(b) Show, separately, that the change in the action under the above translation is also given by

ow 2 dp
e . dt% = p(tQ) - p(tl)- (4-47)

(¢) The system is defined to have translational symmetry when the action does not change under rigid
translation. Show that a system has translation symmetry when

OH

—5=0. (4.48)

That is, when the Hamiltonian is independent of position. Or, when the force F = —9H/0r = 0.

(d) Deduce that the linear momentum is conserved, that is,

p(t1) = p(t2), (4.49)
when the action has translation symmetry.
15. (20 points.) Consider infinitesimal rigid translation in time, described by
or=0, 0p=0, It =7de (4.50)
where Je is independent of position and time.

(a) Show that the change in the action due to the above translation is

- dt—— 4.51
5 (4.51)

W /t2 OH
. ot

(b) Show, separately, that the change in the action under the above translation is also given by

SW 2 dH
- = —/t dt— = —H(ts) + H(t1). (4.52)

(¢) The system is defined to have translational symmetry when the action does not change under rigid
translation. Show that a system has translation symmetry when

_oH _
ot

That is, when the Hamiltonian is independent of time.

0. (4.53)

(d) Deduce that the Hamiltonian is conserved, that is,
H(t1) = H(t2), (4.54)
when the action has translation symmetry.

16. (20 points.) A general rotation in 3-dimensions can be written in terms of consecutive rotations about
x, y, and z axes,

x) 1 0 0 cosfy 0 —sinfy cosfs sinfs; 0 1
ah | = 0 cosf sinby 0 1 0 —sinf3 cosfs 0 Ty (4.55)
xh 0 —sinf; cosb sinfy 0 cosfs 0 0 1 T3
For infinitesimal rotations we use
cosf; ~ 1, (4.56a)

sin 91' ~ 91' — 59“ (456b)
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17.

to obtain
x’l 1 593 —592 T
1'/3 56‘2 —691 1 I3

Show that this corresponds to the vector relation

r=r—00 xr, (4.58)

where
r = Il}A( —+ Igy —+ Igi, (459&)
00 = 601%x + §62y + 0032. (4.59b)

As a particular example, verify that a rotation about the direction z by an infinitesimal (azimuth) angle
0¢ is described by
00 = z4¢. (4.60)

The corresponding infinitesimal transformation in r is given by

or =8¢z X1 = ¢ppio, (4.61)
where p and ¢ are the cylindrical coordinates defined as
Zxt=¢ and |zxr|=p. (4.62)
Observe that, in rectangular coordinates qu) =y — yX.
(20 points.) Consider infinitesimal rigid rotation, described by
dr=0wxr, op=dwxp, Oot=0, (4.63)
where dow/dt = 0.

(a) Show that the variation in the action under the above rotation is

sW 2 oL oL
— = dt — — 4.64
ow . {rx 6r+pxap] (464)
or .
ow 2 OH 0OH
—_—=— dt — — . 4.65
dw /t1 {rx Or +p><8p} (4.65)
(b) Show, separately, that the change in the action under the above rotation is also given by
SW 2 dL
— = dt— = L(t2) — L(ty), (4.66)

Sw Jy, dt

where L = r X p is the angular momentum.

(¢) The system is defined to have rotational symmetry when the action does not change under rigid
rotation. Show that a system has rotation symmetry when

rxg—f:() and pxg—izo, (4.67)
o OH OH
rx—=0 and px— =0. (4.68)

Or op
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Show that this corresponds to

oL oL
55 =0 and 58 = 0, (4.69)
o OH OH

That is, when the Lagrangian is independent of angular coordinates 8 and ¢.

(d) Deduce that the anglular momentum is conserved, that is,
L(t1) = L(t2), (4.71)
when the action has rotational symmetry.

18. (20 points.) Noether’s theorem, in the context of rotational symmetry, states that if the Lagrangian
does not change under an infinitesimal rigid rotation, then the angular momentum L = r x p is conserved.
Prove that the converse of Noether’s theorem is also true. For simplicity consider velocity independent
potentials.



Chapter 5

Canonical transformation

5.1 Hamilton-Jacobi equation

1. (40 points.) The Hamiltonian for the motion of a particle of mass m in a constant gravitational field

g=—gzis
2
H(z,p,t) = o + mgz. (5.1)

(a) Show that the Hamilton equations of motion are

dz P
= -2 5.2
dt m’ (5:2)
b _ —-m (5.2b)
a " '
(b) Show that the Hamilton-Jacobi equation
ow ow
T (Z’W’t) : (5:3)

in terms of Hamilton’s principal function W(z,t) is given by

ow 1 [ow\?
Further, show that
22 :
W(z,t) = —Ft— §m—;n(E — mgz)% (5.5)

is a solution to the Hamilton-Jacobi equation up to a constant.
(¢) Hamilton’s principal function allows us to identify canonical transformations Q = Q(z,p,t) and
P = P(z,p,t), such that

ow ow ow

— = —=-—-P — =—-H .
5 P 90 , 5 ; (5.6a)
ow ow
ap 0, 9P 0, (5.6b)
with the feature that the new coordinates are constants of motion,
dQ dP

41
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To this end, choose @ = E and then evaluate

ow P
P=——=t4+—.
oQ +mg
e _ oW
Hint: Use p = 5.
(d) Show that
2
Q=2 tmge,
2m
P=t+ 2,
mg

is a canonical transformation. That is, show that [Q, P]?’E' = 1. Further, verify that

dq
X _
dt ’
dpP
>
dt ’
oW
K(Q,P,t) = H(Zaput)+ W =0.
5.2 Poisson braket
1. (40 points.) Type notes dated 2022 Mar 29.
5.2.1 Lie Algebra of Poisson braket
1. (40 points.) For two functions
A = Ax,p, 1),
B = B(X7 p7 t)’

the Poisson braket with respect to the canonical variables x and p is defined as

pB. 0A 0B 0A OB

4Bl =9x B op ox

Show that the Poisson braket satisfies the conditions for a Lie algebra. That is, show that

(a) Antisymmetry:
[A,B]P.B. _ _[B7A]P.B.'
x,p x,p

(b) Bilinearity: (a and b are numbers.)
P.B. P.B. P.B.
[aA+bB,C], " =alAC] +b[B,C] .

Further show that
[AB,C)5% = A[B,C]L Y + [4,0]00 B.
x,p x,p x,p

(¢) Jacobi’s identity:

P.B.1P.B.
]

P.B.1P.B.
~p ]

P.B.} P.B. _
x,p - X,p

P IX,p

+ [B, [C, A] +[C, [A, B]

(5.8)

(5.9a)

(5.9b)

(5.10a)
(5.10b)

(5.10c)

(5.11a)
(5.11b)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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2. (40 points.) Show that the commutator of two matrices,
[A, B} = AB - BA,
satisfies the conditions for a Lie algebra, as does the Poisson bracket. In particular show that

(a) Antisymmetry:
[A,B] = —[B,A].

(b) Bilinearity: (a and b are numbers.)
[aA +bB,C] = a[A,C] +b[B,C].

Further show that
[AB,C| = A[B,C] + [A,C]B.

(c) Jacobi’s identity:
[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =0.

3. (40 points.) Show that the vector product of two vectors, in this problem denoted using
[A, B} = A x B,
v
satisfies the conditions for a Lie algebra, as does the Poisson bracket. In particular show that

(a) Antisymmetry:
[A.B] = [B.A].

(b) Bilinearity: (a and b are numbers.)
[aA +bB,C| =a[A,C|] +b[B,C], .

Further show that
[A X B,C]v = A x [B,CL} + [A,CL} x B.

(¢) Jacobi’s identity:
[A’ [B’ C]v]v + [B’ [C’A]v]v + [C’ [A’B}v}v =0.

4. (40 points.) Construct a problem on Heisenberg group, Weyl algebra, Bergman-Segal space.

5. (40 points.) (Refer Sec. 21 Dirac’s QM book.)
The product rule for Poisson braket can be stated in the following different forms:

[AlAQ, B} :]s = Al [A27 B] ,1:1}?; + [Al’B] i,]sAz’
[A,BiBy] = Bi[A,Ba] [+ [A, Bi] ) Bo.

(a) Thus, evaluate, in two different ways,

(414, BiBo], " = AvBi[As, Ba), o + Ar[Az, By, B
1B [Al,Bz}iﬁ'AQ T [Al,Bl}i‘szAg,

[AlAQ,BlBQ]i‘j - BiA [AQ,Bg]i‘j + B [Al,Bg]ii'Ag
+A1[Az, By], 2 By + [A1, Bi],,  As B,

43

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27a)
(5.27b)

(5.28a)

(5.28b)
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(b) Subtracting these results, obtain
(A1By — Budv) [z, Ba] % = [A1, BI]"% (A2 By — Bads). (5.29)
Thus, using the definition of the commutation relation,
[A,B] = AB — BA, (5.30)

obtain the relation .- .-
(A1, B1])[A2, Ba]L" = [41, B2 [ 4, By). (5.31)

(¢) Since this condition holds for A; and B; independent of As and Bs, conclude that

(A1, By = ih[AlaBl}ii', (5.32a)
[Ag, By] = ih[Az,BQ}ii', (5.32b)

where il is necessarily a constant, independent of Ay, As, By, and Bs. This is the connection between
the commutator braket in quantum mechanics and the Poisson braket in classical mechanics. If A’s
and B’s are numbers, then, because their commutation relation is equal to zero, we necessairily have
h = 0. But, if the commutation relation of A’s and B’s is not zero, then finite values of A is allowed.

(d) Here the imaginary number i = y/—1. Show that the constant i is a real number if we presume the
Poisson braket to be real, and require the construction

1
C =—-(AB — BA) (5.33)
7
to be Hermitian. Experiment dictates that h = h/27w, where
h~6.63x 1073 Js (5.34)

is the Planck’s constant with dimensions of action.

6. (20 points.) Given F and G are constants of motion, that is

P.B.
=0
X,p

P.B.
=0.
x,p

[F, H] and [G,H} (5.35)
Then, using Jacobi’s identity, show that [F, G} i']s' is also a constant of motion. Thus, conclude the

following;:

(a) If L, and L, are constants of motion, then L, is also a constant of motion.

(b) If p; and L, are constants of motion, then p, is also a constant of motion.

7. (Refer Goldstein, Sec. 9.5.) Hamiltonian for the motion of a ball (along the radial direction) near the
surface of Earth is given by
2

by
H(z,p,) = o Y2 (5.36)

(a) Determine the equations of motions using

dz OH dp. OH
= and =—

dt — ap. a9z’

(5.37)
Then, solve the coupled differential equations to find the familiar elementary solution

1
z2=29+ %t + 59152. (5.38)
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(b) Next, determine the equations of motion using

pB.  OH

[z, ]x)p = . and [ Z,H}x;p' =2 (5.39)
Then, using
2=+ tfe ]+ 52 [ H) g )y - (5.40)

rederive the elementary solution. Here 0 in the subscripts refers to the initial conditions at ¢ = 0.

8. Harmonic oscillations are described by the Hamiltonian

1 1
H(z,p) = 5p° + 5%, (5.41)
(a) Determine the equations of motions using
de OH dp 0H
— = d = =——. 5.42
dt dp a dt ox ( )
Then, solve the coupled differential equations to find the solution
x = xzgcost + posint, (5.43)
where zg and pgy are given using the intial conditions at ¢ = 0.
(b) Next, determine the equations of motion using
pB.  OH P.B. oH
[.CC, ]x,p = 6_p and I:p’H}x,p = —% (544)
Show that
[ [[:c,H] P.B.,H} P.B., ' ”]P.B. _ -%zin, for number of commutators, NV, be?ng odd, (5.45)
P *p *p iz, for number of commutators, N, being even.
Then, using
P.B. 15 P.B. P.B.
T =ux9+ t[:z:, H} xpo T §t [[x, H]x7p70, }x7p70 e (5.46)

rederive the solution. Here 0 in the subscripts refers to the initial conditions at ¢ = 0.

5.3 Charge in a magnetic field

1. (30 points.) Hamiltonian for a charge particle of mass m and charge ¢ in a magnetic field B is given by

1 2
H =—(p—gA 4
(x,p) = 5~ (P~ qA)", (5.47)
where
B=V xA. (5.48)
Let OA
= _0. 4
En 0 (5.49)

Further, the magnetic vector potential A(x,t) is presumed to be independent of p.
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(a)

(2)
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Show that the Hamilton equations of motion leads to the equations, using (v = dx/dt)

mv = p—qA, (5.50a)
CCZZ—I; = q(VA)-v. (5.50b)

Show that the above equations in conjunction imply the familiar equation

d
md—‘t’ =gqv x B. (5.51)
Evaluate the Poisson braket
[x,x], > =0. (5.52)
Evaluate the Poisson braket
i yi1PB _ Ly
X\ V] = —1Y. (5.53)
Evaluate the Poisson braket
]y =17 (5.54)
Evaluate the Poisson braket
i -1 P.B. i ; A
[mv ,mvj]xp =q(V'A’ — VA"). (5.55)
Verify that o o -
(VIAJ —VIAY) =7"BF = -1 x B. (5.56)

Poisson bracket in classical mechanics has direct correspondence to commutation relation in quantum
mechanics through the factor ih, which conforms with experiments and balances the dimensions.
Then, we can write

[mv', mv?| = ihge"*B* (5.57)
or

mv X mv = ihgB, (5.58)

using the fact that the commutator and the vector product satisfies the same Lie algebra as that of
Poisson bracket.

Evaluate the Poisson braket

i j P.B._i iAg
o' v, = VA (5.59)

xp

Using the antisymmetry property of the Poisson bracket conclude that

v+ Vo], = (VAT - VIAY), (5.60)
Thus, show that
[P V] o+ [V = ——1xB=1eimBm. (5.61)

Deduce the corresponding expression in quantum mechanics to be

PXV+VXp= ihLB. (5.62)
m
Evaluate the Poisson braket
P.B.
[p,p])gp =0. (5.63)
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5.4 Infinitesimal canonical transformation

1. The generator for rotations satisfies the equations

V.G = —dw X p, (5.64a)
VpG = dw Xxr. (5.64b)

Show that
G=6w-L (5.65)

is a solution for the generator, where L = r x p is the angular momentum,
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Chapter 6

Kepler problem

6.1 Ellipse

Refer Notes on Quantum Mechanics.

6.2 Conserved quantities

1. (20 points.) Let r; and ry be the postions of masses m; and ma, respectively, with repect to an inertial
frame. The gravitational interaction energy between the two masses is given by

Gmlmg (6 1)
|I‘1 — I‘2| ’ ’

Assume that the masses have no other internal or external interaction. The position of the center of mass
R is defined by

(m1 4+ m2)R = myry + mors (6.2)
and the relative position between the masses is given by
r=rs—rj. (6.3)
What is the motion of the center of mass R with respect to the position ry.

(a) Stays fixed.
(b

(c
(d

Circular.

Elliptic (or conic section).

None of the above.

Hint: The positions represented by the vectors ri, ro, and R are collinear. Further, r describes an ellipse.
Solution: Show that

ma2

R-ri=—"— 6.4
ry my + mo r, ( a‘)
R-ry= —— " (6.4b)
mi + mo

Then, using r is elliptic, conclude that R — r; describes an ellipse whose length is scaled down by the
factor m;/(my + ma2).

49
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2. (Refer Schwinger, chapter 9) The Hamiltonian for a Kepler problem is

H =

Pt p __
2m1 2m2 |I‘1 — I‘2| ’

(6.5)

where r; and ry are the positions of the two constituent particles of masses m; and ms.

(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and
relative momentum:

ry + r —
R: w, r:rl_rz, P:p1+p2, p:w, (66)
mip + ma my + me

respectively, to rewrite the Hamiltonian as

Pz p2 o«
H=—+"——— 6.7
2M  2u 1’ (6.7)
where ) . .
M =mq 4+ mao, -_= — + —. (68)
1% mq mo
(b) Show that Hamilton’s equations of motion are given by
dR P dp d d
®R_P dP_, dr_p dp_ or (6.9
d M dt dt p’  dt r3

(¢) Verify that the Hamiltonian H, the angular momentum L = r X p, and the Laplace-Runge-Lenz

vector I
A=T PxX2 (6.10)

r Qo

are the three constants of motion for the Kepler problem. That is, show that

dH

dL
R —
dt ’

dA
—— =0 =
dt ’

— =0 (6.11)

3. (20 points.) The Hamiltonian for a Kepler problem (or a classical hydrogenic atom) is

2
p (e%

where r = |r| and p = |p|. The Hamilton’s equations of motion for the Kepler are

dr p dp r
_ P = —a—. 6.13
.  m’ dt 4 ( )

The Hamiltonian H, the angular momentum L = r X p, and the Laplace-Runge-Lenz vector

A=t Lo, (6.14)

T mo

are the three constants of motion for a Kepler problem. Under the special circumstance when r = |r| is

also a conserved quantity, that is,

dr

— =0, 6.15

p (6.15)
we have the case of circular motion. Evaluate the Laplace-Runge-Lenz vector for this case of circular
orbit.
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4. (50 points.) The Hamiltonian for a Kepler problem is

2
p (07

The Hamiltonian H, the angular momentum L = r X p, and the axial vector

AL _pxL (6.17)

r po

are conserved quantities for a Kepler problem.

(a) Show that

(e)

W= %A x L (6.18)

is also a conserved quantity. That is, show that dW /dt = 0. Thus, together, the vectors L, A, and
W, form an orthogonal set that remain fixed in time. Show that the vector W can be expressed in

the form
1!

W=p+ ﬁf x L. (6.19)
Further, show that
A
W = pa—. 6.20
pag (6.20)

Determine the components of the momentum p along these orthogonal vectors by evaluating (p - ]c_,),
(p-A), and (p - W). Thus, construct the momentum p in the form

p=p-L)L+(p-A)A+(p-W)W. (6.21)
Hint: Show that )
p-L=0, p-A=p-r, p-WZ%—i—uH. (6.22)

It is well known that the position r traverses an ellipse about the origin. This is the content of
Kepler’s first law of motion. Show that the momentum p traverses a circle about a fixed point pyg.
That is, show that the momentum p satisfies the equation of a circle,

P —Pol = ¢. (6.23)

Hint: Rewrite the expression for (p - W) inthe foomp-p—2p- W+ W -W =W?2—-2,H.

Determine the vector pgy representing the center of this circle, and find the radius ¢ of this circle.
Verify that the center pg is a conserved quantity.
Solution: pp = W and ¢ = pa/L.

Show that when the position r traverses a circle (A = 0) the center of the circle traversed by
momentum p is the origin.

6.3 Kepler orbits

1. (20 points.) Starting from the Lagrangian for the Kepler problem,

1
Lir,v) = 5m® + % (6.24)

derive Kepler’s first law of planetary motion, which states that the orbit of a planet is a conic section. In
particular, derive

7o

") = T ecos@ =)’

(6.25)
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which is the equation of a conic section in terms of the eccentricity e and a distance ryg. The distance rg
is characterized by the fact that the effective potential

L? Q
U =—= — — 6.26
eH(T) 2‘u,r_2 r ( )
is minimum at rg. We used the definitions, L, = ;u“2q5,
L Uett(ro) = —— p— (6.27)
rg = —= efi(T0) = —5—, e=y/1— : :
07 pa’ o 2rg Uest(ro)

Thus, the orbit of a planet is completely determined by the energy F and the angular momentum L.,
which are constants of motion.

. (20 points.) In the Kepler problem the orbit of a planet is a conic section

To

1+ ecos(¢ — ¢o)

expressed in terms of the eccentricity e and distance 7. Determine the constant ¢g to be 0 by requiring
the initial condition

r(g) = (6.28)

o
0) = . 6.29
"(0) = 7 (6:29)
This leads to r
0
= . 6.30
() = (6.:30)
The distance rq is characterized by the fact that the effective potential
L? «
Ug(r) = —2 — — 6.31
W) = 52— 2 (6:31)
is minimum at rg. We used the definitions
L Usit(ro) = —— - _r (6.32)
ro = —= efi(ro) = —5—, e=y/1- : '
0T o 2rg Uett(10)

Thus, the orbit of a planet is completely determined by the energy E and the angular momentum L.,
which are constants of motion. The statement of conservation of angular momentum can be expressed in
the form
dt = £ 124y, (6.33)
L,
which is convenient for evaluating the time elapsed in the motion. For the case of elliptic orbit, Udg(rg) <
E < 0, show that the time period is given by

2m 2
_ o 2m
=— . 6.34
/ 1+ecos¢) L, (1—@2)% ( )
Show that at point ‘2’ in Figure 2
¢ = g and 7 = rq. (6.35)
The time taken to go from ‘1’ to ‘2’ is given by (need not be proved here)

T4 l1+e

{4 4 [1—e 2e 5
o = / (b 1+ecos¢) — (;tan —?\/1—e>. (6.36)
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Figure 6.1: Elliptic orbit

Evaluate t1_,5 for e = 0 and e = 1. Show that at point ‘3’ in Figure 2

V1 — 2
¢=m—tan"! (7e> , and r=a. (6.37)
e
The time taken to go from ‘1’ to ‘3’ is given by (need not be proved here)
an—1( Vi=<2
hos = /Hw =) a0 T () % (6.38)
L (1+ecosg)? 4 T ) '

Similarly, the time taken to go from ‘3’ to ‘4’ is given by (need not be proved here)

™ 2
! TH T 2e
t = — dprer——--s=—(14+—. 6.39
42y e 5 (105) o

Evaluate the time elapsed in the above cases for e — 0 and e — 1. The eccentricity e of Earth’s orbit is
0.0167 and timeperiod T is 365 days. Thus, calculate

t153 —t12 (6.40)

for Earth in units of days.
Solution: ~ 1 day for Earth.

3. (20 points.) Refer to the essay by J. M. Luttinger titled ‘On “negative” mass in the theory of gravitation’
in 1951.

(a) Reproduce all the equations in the essay.

(b) Critically assess the logic of the arguments in the essay.

6.4 Precession of the perihelion

1. (20 points.) Resource: Lecture dated 2021 April 13, available at
https://youtu.be/VGixAMMkvM4.
Kepler problem is described by the potential energy

Ur)=—-—, (6.41)


https://youtu.be/VGfxAMMkvM4
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and the corresponding Lagrangian

1
L(r,v) = —pu? + 2. (6.42)
2 r
For the case when the total energy FE is negative,
L2
2 E<0,  py=E, (6.43)
279 no
where L, is the angular momentum, the motion is described by an ellipse,
To E
r(¢p) = , e=4/14+——. 6.44
) = T e os(d — o) (@/2ro) (649

Perihelion is the point in the orbit of a planet when it is closest to the Sun. This corresponds to ¢ = ¢g. The
precession of the perihelion is suitably defined in terms of the angular displacement A¢ of the perihelion
during one revolution,

Ag =2 [ / d¢] —om, (6.45)

where ro
min — 6.46
r T e (6.46)
is the perihelion, when the planet is closest to Sun, and
70
max — 6.47
Tma 1—e ( )
is the aphelion, corresponding to ¢ = ¢y + m, when the planet is farthest from Sun.
(a) For the Kepler problem derive the relation
d 1
dp = 2L . (6.48)
Toye -y
Show that the precession of perihelion is zero for the Kepler problem.
(b) When a small correction
SU(r) = -2 —wu (TO)S (6.49)
r)=—"%=kK — .
r3 o\
expressed in terms of dimensionless parameter s using the relation f = —xUyrg, is added we have
the perturbed potential energy
a f a |rg 70\ 3
vy =-2_2__* | (_) . 6.50
(r) roord 2r0[r+ﬂ T ] ( )

Show that the precession of the perihelion is no longer zero.



Chapter 7

Special relativity

7.1 Relativity principle

Problems

1. (20 points.) The relativity principle states that the laws of physics are invariant (or covariant) when
observed using different coordinate systems. In special relativity we restrict these coordinate systems to
be uniformly moving with respect to each other.

(a) Linear: Spatial homogeneity, spatial isotropy, and temporal homogeneity, require the transformation
to be linear. (We will skip this derivation. No submission needed.) Then, for simplicity, restricting
to coordinate systems moving with respect to each other in a single direction, we can write

2l = A(v)z + B(v)t, (7.1a)
t' = E()z+ F(v)t. (7.1b)

We will refer to the respective frames as primed and unprimed.

(b) Identity: An object P at rest in the primed frame, described by z’ = 0, will be described in the

unprimed frame as z = vt.
!
t t < P
v
2! z

Figure 7.1: Identity.

Using these in Eq. (7.1a), we have
0= A(v)vt + B(v)t. (7.2)

This implies B(v) = —vA(v). Thus, show that

2= A(w) (z — vt), (7.3a)
t' = EW)z+ F(v)t. (7.3b)

(¢) Reversal: The descriptions of a process in the unprimed frame moving to the right with velocity v
with respect to the primed should be identical to those made in the unprimed (with their axis flipped)

95
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Figure 7.2: Reversal.

moving with velocity —v with respect to the primed (with their axis flipped). This is equivalent to
the requirement of isotropy in an one dimensional space.

That is, the transformation must be invariant under

z = —z, 2= =2, v — —u. (7.4)

This implies
-2 = A(—v) (=2 + vt), (7.5a)
t' = —E(-v)z+ F(-v)t. (7.5b)

Show that Egs. (7.3a) and (7.5a) in conjunction imply

(d) Reciprocity: The description of a process in the unprimed frame moving to the right with velocity v
is identical to the description in the primed frame moving to the left.

! !
t t <P t t < P
z v, 2 Y z

Figure 7.3: Reciprocity.

That is, the transformation must be invariant under

(z,t) — (2',t) (' t) = (2,t) v— —v. (7.8)

Show that this implies
z = A(—v) (2 +ot'), (7.9a)
t = E(—v)z + F(-v)t. (7.9b)

Show that Egs. (7.3) and Egs. (7.9) imply
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Together, for arbitrary A(v), the relativity principle allows the following transformations,
2= A(v) (z — vt), (7.11a)
Y= A(v) E (ﬁ - 1) ot t] . (7.11D)
In Galilean relativity we require ¢ = ¢. Show that this is obtained with
Alv) =1 (7.12)
in Egs. (7.11). This leads to the Galilean transformation
2=z —wt, (7.13a)

t =t (7.13b)

In Einstein’s special relativity the requirement is for a special speed c that is described identically by both
the primed and unprimed frames. That is,

z = ct, (7.14a)
2 =ct. (7.14b)

Show that Egs. (7.14) when substituted in in Egs. (7.11) leads to

Alv) = —. (7.15)
02
-z
This corresponds to the Lorentz transformation
2= A(v)(z —vt), (7.16a)
¥ = A(v) (—%z n t) . (7.16b)
c

This suggests that it should be possible to contrive additional solutions for A(v) that respects the relativity
principle, but with new physical requirements for the respective choice of A(v). Construct one such
transformation, which will not be used in grading.

7.2 Lorentz transformation

Problems

1. (20 points.) The Lorentz factor
1

V= \/17——@7
(a) Evaluate v for v = 30m/s (~ 70miles/hour).
(b) Evaluate v for v = 3¢/5.

(7.17)

ol

2. (20 points.) Lorentz transformation describing a boost in the z-direction is obtained using the matrix

v By 00
3 00
L= 073 Lol (7.18)

0 001
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(a) Show that the determinant of the matrix L is 1.
(b) Determine L~1.

3. (20 points.) Lorentz transformation (in one dimension) is given by

Az = y(Az —vAb), (7.19a)
A

At =~y (At - 3—2) : (7.19b)
¢ c

where v = /1 — v2/c2. Show that for
Az
d — 2
R an A7 < (7.20)

one obtains the Galilean transformation

Az = Az — vAt, (7.21a)
At = At. (7.21b)

Note: For the case when Az and At represent the change in position and time of a particle we could have
v and Az/At to be identical.

. (20 points.) How does the wave equation

? 1
<@E_éﬁﬁ>ﬂz_dy_o (7.22)

transform under the Lorentz transformtion

2= vz + Bret, (7.23a)
ct' = Byz + yet. (7.23b)
Solution:
0? 1 02
where a = /(1 — 8)/(1 + B).
. (20 points.) Verify the following:
TrA = A (7.25a)
detA = Eilig...inAil 1Ai22 . Al"n (725b)
1 Y4 -/ . . .
= H‘gilizmin81112.“%’4“ i Alzié Ce AZ"%, (725C)

where n is the dimension of the matrix A.

. (20 points.) Prove that any orthogonal matrix R satisfying

RRT =1 (7.26)

in N-dimensions has N(N — 1)/2 independent variables.
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7. (20 points.) Lorentz transformation describing a boost in the z-direction, y-direction, and z-direction,

are
M P11 00 72 0 =By 0 v3 00 —fB373
| =Bm m 00 _ 0 1 0 0 _ 0 10 0
L= 0 0 10| T2~ —Bav2 0 v 0] Ls = 0 01 0 ’
0 0 01 0 0 0 1 —B3v3 00 3

respectively. Transformation describing a rotation about the z-axis, y-axis, and z-axis, are

10 0 0 1 0 0 0 1 0 0 0

Ry — 01 0 0 R, — 0 cosws 0 —sinws R — 0 cosws sinwsg 0
! 00 cosw; sinw; |7 72 0 0 1 0 s 0 —sinws cosws 0
0 0 —sinwy coswy 0 sinws 0 cosws 0 0 0 1

respectively. For infinitesimal transformations, 8; = §3; and w; = dw; use the approximations
¥ ~ 1, cosw; ~ 1, sinw; ~ dw;,
to identify the generator for boosts N, and the generator for rotations the angular momentum J,
L=1+0/8-N and R=1+dw-J,

respectively. Then derive
[N17N2} = N1N3 — NaNy = Js.

This states that boosts in perpendicular direction leads to rotation. (To gain insight of the statement,

calculate [J1, Jo] and interpret the result.)

(a) Is velocity addition commutative?
(b) Is velocity addition associative?

(¢) Read a resource article (Wikipedia) on Wigner rotation.
8. (20 points.) (Based on Hughston and Tod’s book.) Prove the following.

(a) If p* is a time-like vector and pts, = 0 then s* is necessarily space-like.

(b) If p* and ¢* are both time-like vectors and pfq, < O then either both are future-pointing or both

are past-pointing.
c) If p* and ¢* are both light-like vectors and p*gq,, = 0 then p* and ¢* are proportional.
g "
d) If p* is a light-like vector and p*s, = 0 then s is space-like or p* and g* are proportional.
g i

(e) If u®, v*, and w®, are time-like vectors with u®v, < 0 and v*w, < 0 then v*w, < 0.
9. (20 points.) Non-relativistic limits are obtained for § < 1 in relativistic formulae.

(a) Does Lorentz transformation recover Galilean transformation for 5 < 1?

(b) Does Lorentz transformation recover Galilean transformation for f < 1 and ¢ — co?

7.3 Geometry of Lorentz transformation

1. (20 points.) A four-vector in the context of Lorentz tranformation can be described using the notation

a® = (a°,a*,a?, a®).
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Let
b = (b°,b1, 0%, 0%) (7.33)

be another four-vector. The scalar product between two Lorentz vectors is given by
a®be = —a®b? 4 a'b' 4 a®b*® + a®b>. (7.34)
The square of the ‘length’ of the four-vector a® is given by
a“aq, (7.35)

which is not necessarily positive. The length of a four-vector is invariant, that is, it is independent of the
Lorentz frame. If two Lorentz four-vectors are orthogonal they satisfy

a“by = 0. (7.36)
Orthogonality is an invariant concept.

(a) Determine the length of
p* = (5,0,0,3), (7.37)
where the numbers are in arbitrary units. Is it time-like, light-like, or space-like?
(b) Find a four-vector of the form

¢® = (¢°,0,0,¢%) (7.38)

that is perpendicular to p®.

2. (20 points.) A hypothetical particle is observed by an inertial observer to be moving with non-uniform
superluminal speed (v > ¢) at every instant of time from remote past to remote future. Draw a plausible
world line of such a particle.

7.4 Poincaré (parallel) velocity addition formula

1. (60 points.) The Poincaré formula for the addition of (parallel) velocities is

Vg + Up
Vg Up

1+

v =

(7.39)

c2

where v, and vy are velocities and c is speed of light in vacuum. Jerzy Kocik, from the department of
Mathematics in SIUC, has invented a geometric diagram that allows one to visualize the Poincaré formula.
(Refer [?].) An interactive applet for exploring velocity addition is available at Kocik’s web page [?]. (For
the following assume that the Poincaré formula holds for all speeds, subluminal (v; < ¢), superluminal
(v; > ¢), and speed of light.)

(a) Analyse what is obtained if you add two subluminal speeds?

(b) Analyse what is obtained if you add a subluminal speed to speed of light?
()

(d) Analyse what is obtained if you add speed of light to another speed of light?
(e)

(f)

Analyse what is obtained if you add a subluminal speed to a superluminal speed?

Analyse what is obtained if you add a superluminal speed to speed of light?
f

Analyse what is obtained if you add two superluminal speeds?
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2.

7.5

(20 points.) The Poincaré formula for the addition of (parallel) velocities is, ¢ = 1,

v ot (7.40)
1+ v,vp
where v, and v, are velocities and c is speed of light in vacuum. Assuming that the Poincaré formula
holds for all speeds, subluminal (—1 < v; < 1), superluminal (|v;| > 1), and speed of light, analyse what
is obtained if you add a subluminal speed to a superluminal speed? That is, is the ‘sum’ subluminal or
superluminal. Is the answer unique?

. (20 points.) The Poincaré formula for the addition of (parallel) velocities is

Va + Up

1+ VaUp

(7.41)

v =

2
where v, and v, are velocities and ¢ is speed of light in vacuum. (For the following assume that the
Poincaré formula holds for all speeds, subluminal (v; < ¢), superluminal (v; > ¢), and speed of light.)
Analyse what is obtained if you add a subluminal speed to a superluminal speed? That is, is the resultant
speed subluminal or superluminal.

Hint: Analyse the case

Yo _ _C 45 (7.42)

(& Up
for infinitely small § > 0.

(20 points.) The Poincaré formula for the addition of (parallel) velocities is, ¢ = 1,

. Vg + Up

= — 7.43
v 14+ vavp’ ( )

where v, and v, are velocities and ¢ is speed of light in vacuum. Assuming that the Poincaré formula
holds for all speeds, subluminal (—1 < v; < 1), superluminal (|v;| > 1), and speed of light, analyse what
is obtained if you add a speed to an infinitely large superluminal speed, that is, v, — co. Hint: Inversion.

. (30 points.) Let

tanh 6 = (3, (7.44)
where 8 = v/c. Addition of (parallel) velocities in terms of the parameter 6 obeys the arithmatic addition
0 =04+ 6. (7.45)

(a) Invert the expression in Eq. (7.44) to find the explicit form of # in terms of 8 as a logarithm.
(b) Show that Eq. (7.45) leads to the relation

Gtg)_Gtg) <1J—r§:> (7.46)

(¢c) Using Eq. (7.46) derive the Poincaré formula for the addition of (parallel) velocities.

Kinematics

. (100 points.) Relativisitic kinematics is constructed in terms of the proper time element ds, which

remains unchanged under a Lorentz transformation,
—ds* = —c*dt* + dx - dx. (7.47)

Here x and ¢ are the position and time of a particle. They are components of a vector under Lorentz
transformation and together constitute the position four-vector

x* = (ct, x). (7.48)
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(a) Velocity: The four-vector associated with velocity is constructed as

dx®

¥ =c—. 7.49
u e— (7.49)
i. Using Eq. (7.47) deduce
1 d
~vds = cdt, where v = \/17——52’ 8= %, v = d_}t( (7.50)
Then, show that
u® = (¢y,vy). (7.51)
Here v is the velocity that we use in Newtonian physics.
ii. Further, show that
Uy = —c. (7.52)

Thus, conclude that the velocity four-vector is a time-like vector. What is the physical implication
of this statement for a particle?

iii. Write down the form of the velocity four-vector in the rest frame of the particle?

(b) Momentum: Define momentum four-vector in terms of the mass m of the particle as

(63

p* = mu® = (mey, mvy). (7.53)

Connection with the physical quantities associated to a moving particle, the energy and momentum
of the particle, is made by identifying (or defining)

Pt = (Em) : (7.54)

¢
which corresponds to the definitions

E = mc?y, (7.55a)
p = mv7y, (7.55b)

for energy and momentum, respectively. Discuss the non-relativistic limits of these quantities. In
particular, using the approximation

102
=1l4+-—=+... 7.56
v=EIrg st (7.56)
show that
1
E —mc* = imv2 +..., (7.57a)
Pp=mv+.... (7.57b)
Evaluate
Ppa = —m3ct. (7.58)
Thus, derive the energy-momentum relation
E% — p?c? = m2c. (7.59)

(¢) Acceleration: The four-vector associated with acceleration is constructed as

du®
¥ = c—. 7.60
a c T ( )
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i.

ii.

iii.

iv.

vi.

vii.

Show that p p
a_ @r Y
a® =~ (Cdt Vo +’ya) , (7.61)
where 4
v
= 7.62
a=— (7.62)

is the acceleration that we use in Newtonian physics.
Starting from Eq. (7.52) and taking derivative with respect to proper time show that

u®aq = 0. (7.63)

Thus, conclude that four-acceleration is space-like.
Further, using the explicit form of u®a, in Eq. (7.63) derive the identity

dry v-ay 4
— = . 7.64
dt ( c? ) i ( )
Show that v.a vv-a
a® = (—74,a72 + — 74) (7.65)
c c c

Write down the form of the acceleration four-vector in the rest frame (v = 0) of the particle as
(0,ap), where

ap = (7.66)

a|rest frame

is defined as the proper acceleration. Note that the proper acceleration is a Lorentz invariant
quantity, that is, independent of which observer makes the measurement.

Evaluate the following identities involving the proper acceleration

Can 2 2
a%a, = ag - ag = [a-a+(v—ca) 72] 7= [a-a— <an> ]76- (7.67)

c

In a particular frame, if v || a (corresponding to linear motion), deduce
|ao| = |al~”. (7.68)

And, in a particular frame, if v | a (corresponding to circular motion), deduce

|ao| = |a+*. (7.69)
Force: The force four-vector is defined as
dp® v dE
o _ . F 7.70
! ¢ ds (c dt’ 7) ’ ( )
where the force F, identified (or defined) as
dp
F=— 7.71
L3 (771)

is the force in Newtonian physics. Starting from Eq. (7.58) derive the relation

dE

—=Fov (7.72)

which is the power output or the rate of work done by the force F on the particle.
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(e) Equations of motion: The relativistic generalization of Newton’s laws are
f& =ma®. (7.73)
Show that these involve the relations, using the definitions of energy and momentum in Egs. (7.55),

dp v-a s

F = i may + mv = (7.74a)
dE
- = F-v=mv-ay’. (7.74b)

Discuss the non-relativistic limits of the equations of motion.

2. (20 points.) Lorentz transformation relates the energy E and momentum p of a particle when measured

in different frames. For example, for the special case when the relative velocity and the velocity of the

particle are parallel we have
E’/C) ( g ﬁw) <E/C)
= ) 7.75
< Y By v p (7.75)

Photons are massless spin 1 particles whose energy and momentum are £ = hw and p = hk, such that
w = ke. Thus, derive the relativistic Doppler effect formula

W =w % (7.76)

. (20 points.) Neutral m meson decays into two photons. That is,

0 — Y1 + 2. (7.77)

Energy-momentum conservation for the decay in the laboratory frame, in which the meson is not neces-
sarily at rest, is given by
pr =pi +p3. (7.78)

(5)- (B) o (2),

where F; and p are the energy and momentum of neutral 7 meson, and F;’s and p;’s are the energies
and momentums of the photons. Thus, derive the relation

Or, more specifically,

m2ct = 2E1 By (1 — cosb), (7.80)

where m is the mass of neutral 7 meson, and 6 is the angle between the directions of p; and ps.

. (20 points.) Using Maxwell’s equations we can show that a monochromatic electromagnetic wave has

the electromagnetic energy density U and electromagnetic momentum density G given by

1 1

U= §5§E2 §M§H2 =e2E? = uiH?, (7.81)
ExH .U

G = :—2 = k—. (7.82)

Thus, the energy momentum four-vector for a monochromatic electromagnetic wave is given by

P = (%G) - % (1Kk). (7.83)

Note: Complete this!
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5. (20 points.) Length contracts and time dilates. That is,

L
L==2  T=Ty, (7.84)
v

where Lo and Ty are proper length and proper time. Similarly, show that (for v || a)
|ao|
|a| = 3
~3
where |ag| is the proper acceleration measured in the instantaneaous rest frame of the particle. Further,
for v 1 a show that

(7.85)

|ao|
. (20 points.) Time dilates. That is,
1

V=
V-

where Tj is the proper time measured in the instantaneous rest frame of the clock measuring Ty and
T is the time measured by a clock moving with velocity v relative to the clock measuring proper time.
Similarly, show that (for v || a)

T =Ty, (7.87)

= 20l

7

where |ag| is the proper acceleration measured in the instantaneous rest frame of the particle. Derive the

equation for the trajectory of a particle moving in a straight line (along the z axis) with constant proper
acceleration, after starting from rest from the point 2z = ¢?/|ag| at time ¢ = 0.

(7.88)

7.6 Dynamics

7.6.1 Charge particle in a uniform magnetic field: Circular motion

1. (20 points.) A relativisitic particle in a uniform magnetic field is described by the equations

dE
e F-v, (7.89a)
dp
— =F 7.89b
P _w (7.59)
where
E = mc®y, (7.90a)
p = mvy, (7.90b)
and
F =¢qv x B. (7.91)
Show that J
g
— =0. 7.92
o (7.92)
Then, derive
d
d—‘t' =V X w,, (7.93)
where B
R (7.94)
my

Compare this relativistic motion to the associated non-relativistic motion.
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2. (20 points.) If the motion of a non-relativistic particle is such that it does not change the kinetic energy

of the particle, we have

Show that this imples

(7.95)

(7.96)

This is achieved when the acceleration a = 0 or in the case of uniform circular motion. Starting from
Eq. (7.96) show that the relativistic generalization of kinetic energy E = mc?y is also conserved, that is,

Observe that

T d

d
7 (mc*y) = 0.

i(BQ):_ldl 1 dvy

2 2dty2 A3 dt

7.6.2 Charge particle in a uniform electric field: Hyperbolic motion

1. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

where

and

dE

— _F.

dt v

dp

I,

dt ’

E = mc?y,

p = mv7y,
F =¢qE.

Let us consider the configuration with the electric field in the y direction,

and initial conditions

(a) In terms of the definition

E=Fy,
v(0) = 0%+ 0y + 0%,
x(0) = 0%+ yo ¥ + 02
1 qE
wo=——",
cm

show that the equations of motion are given by

and

dy
E—“’O'ﬁ

d
a(ﬁ”ﬂ = wo.

(7.97)

(7.98)

(7.99a)

(7.99b)

(7.100a)
(7.100Db)

(7.101)

(7.102)

(7.103a)
(7.103b)

(7.104)

(7.105)

(7.106)
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(b)

Since the particle starts from rest show that we have

By = wot. (7.107)

For our configuration this implies
Bs =0, (7.108a)
Byy = wot, (7.108b)
B: = 0. (7.108¢)

Further, deduce
th

By = ——m—— (7.109)

\/l—l—w?)tQ.

Integrate again and use the initial condition to show that the motion is described by

v == [rvaae-1]. (r.110)
wo

Rewrite the solution in the form

2 2
(y—yo+i> —r =2 (7.111)
wo

- 2
wo

This represents a hyperbola passing through y = yg at ¢t = 0. If we choose the initial position
Yo = ¢/wp we have
y? — 22 =yl (7.112)

The (constant) proper acceleration associated with this motion is

CQ

a=wpec=—. (7.113)
Yo
A Newtonian particle moving with constant acceleration « is described by equation of a parabola

1

Y—Yo = §Qt2. (7.114)
Show that the hyperbolic curve
242
y=yoy/1+ (7.115)
Yo
in regions that satisfy
wot K 1 (7.116)
is approximately the parabolic curve
L o
y:yo+§o¢t +... (7.117)

2. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration « is described by equation of a hyperbola

2

22— Ptr =23, 20 = <. (7.118)
a
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Figure 7.4: Problem 2

(a) This represents the world-line of a particle thrown from z > 2y at t < 0 towards z = zp in region
of constant (proper) acceleration a as described by the bold (blue) curve in the space-time diagram
in Figure 2. In contrast a Newtonian particle moving with constant acceleration « is described by
equation of a parabola

1
z—2= §ozt2 (7.119)

as described by the dashed (red) curve in the space-time diagram in Figure 2. Show that the

hyperbolic curve
/ c2t?
= 14+ — 7.120
z2=204/1+ p ( )

in regions that satisfy

c
t< = (7.121)
«
is approximately the parabolic curve
L
Z:Zo+§0¢ +... (7.122)

(b) Recognize that the proper acceleration o does not have an upper bound.

(c) A large acceleration is achieved by taking an above turn while moving very fast. Thus, turning
around while moving close to the speed of light ¢ should achieve the highest acceleration. Show that
a — oo corresponding to zg — 0 represents this scenario. What is the equation of motion of a particle
moving with infinite proper acceleration. To gain insight, plot world-lines of particles moving with
a=c?/z, a =10c%/z, and a = 100¢?/ 2.

3. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration « is described by the equation of a hyperbola

2
22— *t? =23, zo = <. (7.123)
o

This is the motion of a particle ‘dropped’ from z = 2 at ¢ = 0 in region of constant (proper) acceleration.
See Figure 3. Using geometric (diagrammatic) arguments might be easiest to answer the following.
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ct

20

Figure 7.5: Problem 3

(a) Will a photon dispatched to ‘chase’ this particle at ¢ = 0 from z = 0 ever catch up with it? If yes,
when and where does it catch up?

(b) Will a photon dispatched to ‘chase’ this particle at t = 0 from 0 < z < 2 ever catch up with it? If
yes, when and where does it catch up?

(¢) Will a photon dispatched to ‘chase’ this particle, at t = 0 from z < 0 ever catch up with it? If yes,
when and where does it catch up?

What are the implications for the observable part of our universe from this analysis?

4. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration g is described by the equation of a hyperbola

2
24(t) = /22 + 22, 20 = Cg (7.124)

This is the motion of a particle that comes to existance at z; = 400 at t = —oo, then ‘falls’ with constant
(proper) acceleration g. If we choose 4(0) = 0 and y,(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = zp, and then returns back to infinity. Assume you are positioned at the origin.
If the particle is a source of light (imagine a flash light) at what time will the light first reach you at the
origin? Where is the particle when this happens?

5. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration g is described by the equation of a hyperbola

2
2o(t) = /22 + 22, 0= (7.125)
g

This is the motion of a particle that comes to existance at zo = +00 at ¢ = —oo, then ‘falls’ with constant
(proper) acceleration g. If we choose z2(0) = 0 and y2(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = zp, and then returns back to infinity. Another particle is at rest at z;

zZ1 (t) = Z1, (7126)
such that 0 < z1 < zg. Assume that both particles emit photons continuously.

(a) At what time do photons emitted by 2 first reach 1?7 Where is particle 2 when this happens?
(b) At what time is the last photon that reaches 2 emitted by 1?7 Where is particle 2 when this happens?
(¢) Do all the photons emitted by 1 reach 2?
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(d) Do all the photons emitted by 2 reach 17

6. (20 points.) The path of a relativistic particle 1 moving along a straight line with constant (proper)
acceleration g is described by the equation of a hyperbola

2
A(t) = /2 422, = —. (7.127)
9

This is the motion of a particle that comes to existance at z; = 400 at ¢ = —o0o, then ‘falls’ with constant
(proper) acceleration g. If we choose z4(0) = 0 and y4(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = 2y, and then returns back to infinity. Consider another relavistic particle 2
undergoing hyperbolic motion given by

2
() = =/ + 22, = —. (7.128)
9

This is the motion of a particle that comes to existance at zo = —o0 at ¢ = —oo, then ‘falls’ with constant
(proper) acceleration g. If we choose z4(0) = 0 and y4(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = —zp, and then returns back to negative infinity. The world-line of particle 1

is the blue curve in Figure 6, and the world-line of particle 2 is the red curve in Figure 6. Using geometric
(diagrammatic) arguments might be easiest to answer the following. Imagine the particles are sources of
light (imagine a flash light pointing towards origin).

—— —— >
—20 20
ct
zo(t) 21 (t)
z
—Zz 20

Figure 7.6: Problem 6

(a) At what time will the light from particle 1 first reach particle 2?7 Where are the particles when this
happens?

(b) At what time will the light from particle 2 first reach particle 17 Where are the particles when this
happens?

(c¢) Can the particles communicate with each other?

(d) Can the particles ever detect the presence of the other? In other words, can one particle be aware

of the existence of the other? What can you deduce about the observable part of our universe from
this analysis?

7. (20 points.) Two masses (one heavier than the other) move with constant proper acceleration «, after
they are dropped from position 29 = ¢?/a. Does the time taken to fall a given distance depend on mass?
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Recall that Aristotle (384-322 BC) presumed that the time taken to fall a given distance depended on
mass. Galileo (1564-1642) argued, based on a famous thought experiment (refer Wikipedia) that the time
taken to fall a given distance is independent of mass.

(a) Consider an electron and a proton connected by a hypothetical string. What is the tension in the
string when they move in a uniform electric field (which leads to proper acceleration). We will have
to dictate how the distance between them changes.

(b) What about charges of different masses in an electric field?
(¢) What about a hydrogen atom? How does electrostatic energy associated to the hydrogen atom fall?
(d) Do these considerations involve a Poincare stress?

Keywords: Trouton-Noble experiment, Laue current, 4/3 problem.

NOTE: This problem needs thought and scrutiny!

7.6.3 Charge particle in a uniform electric field with an initial velocity normal to
electric field: Hyperbolic motion

1. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

e F-v, (7.129a)

dp

— =F 7.129b

P_w (7.1290)
where

E = mc®y, (7.130a)

P = mv7y, (7.130Db)
and

F =qE. (7.131)

Let us consider the configuration with the electric field in the y direction,

E=FEy, (7.132)

and initial conditions
v(0) = vox+0y+01z, (7.133a)
x(0) =0%x+yoy+02. (7.133b)

We will use the associated definitions By = v(0)/c and o = 1/+/1 — 3.

(a) In terms of the definition
 14qE

7.134
YO T ( )
show that the equations of motion are given by

dry

— =wp - 7.135

prial B ( )

and J
a(ﬁ”ﬂ = wo. (7.136)
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For our configuration show that
By = wot — BoYoX, (7.137)
such that
By = —Boo, (7.138a)
Byy = wot, (7.138b)
B.y = 0. (7.138¢)
Using 8.7 = 0, learn that
2
b =0 (7.139)

Qg

and in conjunction with S,y = —foyo deduce that

B.=0 (7.140)
and
2
=48 =1 (7.141)
ﬁo ’
Thus, deduce
72 = wW2t? + A2 (7.142)
and
62
82+ 82 =65 + 7—2 (7.143)
0
Further, deduce
By = _ Lot (7.144)
RV '
and
By = L, (7.145)
V1 +@gt?
where w
Wy = =2, (7.146)
o

Integrate again and use the initial condition to show that the motion is described by

Y—yo = — [,/1+w§t2—1], (7.147a)
@o

¢ — 0 = <2 sinh~! @yt (7.147b)
@o
and z = 0.
Show that for vy = 0 we reproduce the solution for a particle starting from rest. Next, for
wot < 1 (7.148)
and
o = wyc (7.149)
obtain the non-relativistic limits,
1
Y=Y = 504152, (7.150a)
x —xo = vot. (7.150b)

Hint: Recall the series expansion

sinh_llen(:v—i— :102+1)::v+.... (7.151)
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7.7 Electrodynamics

Problems
1. (20 points.) In terms of the four-vector potential
cA* = (¢,cA)
the Maxwell field tensor F},,, is defined as
F,, =0,A, —0,A,,

and the corresponding dual tensor is defined as

a0 1 va
P = oet PFap.
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(7.152)

(7.153)

(7.154)

Derive the following relations, which involve quantities that remain invariant under Lorentz transforma-

tions.
P E,, = 2(c*B? — E?).
AFWE,, = 2(E? - 2B?).
cF™F,, = —4B-E.

(7.155a)
(7.155b)
(7.155¢)

2. (100 points.) Eigenvalues of the energy momentum tensor. (We choose ¢ = 1, which is easily undone by

replacing E — %E everywhere.)

(a) Using
0 —Ey —E; —E3
roo_ E, 0 Bs —Bs
w=\ g -B, 0 B
Ey B, —B; 0
and

F,, = EgWQBFQB

evaluate the following:
i. FRFy,
ii. FrAFY,

iii. Then, derive

FMFy, = 0",E-B,

FHEy, — FFMFy, = 6, (B? — E?).

(b) Define
2f = (B>~ FE*) and ¢g=E-B.

Thus, construct matrix (or dyadic) equations

=
I

N Q
=

in terms of matrices (or dyadics) F and F.

(7.156)

(7.157)

(7.158a)
(7.158b)

(7.159)

(7.160a)
(7.160Db)
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(¢) Show that the eigenvalues A of the field tensor F satisfy the quartic equation
M 42f0% — g2 =0. (7.161)

(d) Evaluate the eigenvalues to be £A; and +\; where

/\1=\/—f—\/f“rg?:%[\/f+ig+\/f—ig}, (7.162)
/\zz\/—f+\/f2+92=i2[\/f+ig—\/f—ig}- (7.163)

(e) Show that

i. if B2 — E? =0, then the eigenvalues are +,/g9 and +i,/g.
ii. if B-E = 0, then the eigenvalues are 0, 0, and 4+/2f.
(f) Prove the following:

i. There is no Lorentz transformation connecting two reference frames such that the field is purely

magnetic in origin in one and purely electric in origin in the other.

ii. If B2 — E? > 0 in a frame, then there exists a frame in which the field is purely magnetic.
iii. If B2 — E? < 0 in a frame, then there exists a frame in which the field is purely electric.
iv. If B2 — E? = 0 in a frame, then there exists a frame in which

— B is perpendicular to E, if B- E = 0.
— B is parallel to E, if B- E > 0.
— B is antiparallel to E, if B- E < 0.

3. (40 points.) The electric and magnetic fields transform under a Lorentz transformation (for boost in z
direction) as

El(x',t") = v Ey(r,t) + By cBy(r,t),(7.164a) cBL(x',t') = veBy(r,t) — By Ey(r,t), (7.165a)
cB;(r’,t’) = By Ey(r,t) + vcBy(r,t),(7.164b) E;(r’,t’) = —BvcBy(r,t) + v E,(r,t),(7.165b)
EL(r',t') = E,(r,t) (7.164c) cB.(r',t') = ¢B,(r,t), (7.165c¢)

where 8 = v/c and v = 1/4/1 — 2. The transformed values of the coordinates and the fields are distin-
guished by a prime. Derive the invariance properties

E'(,t)-B'(r',t') = E(r,t) - B(r,t) (7.166)

and
E'(r',t')? — 2B/ (r',t')? = E(r,t)? — *B(r, ). (7.167)

4. (20 points.) Let an infinitely thin plate occupying the y = 0 plane consist of a uniform charge density
flowing in the x direction described by drift velocity 84 = v/c.

(a) Show that the electric and magnetic field for this configuration is given by

.o
E = n(y)YQ—EO, (7.168a)

B = n(y)zBaF, (7.168b)

where

1, y >0,
= 7.169
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Thus, we have
cB = ﬂdE.

Recall that the motion of a point charge in this field configuration is a cycloid,

z(t) — vgt = Rsinwet,
y(t) — R = Rcoswet,

that satisfies ) )
[a:(t) — vqt} + [y(t) - R} = R?,

where
_ 4B

We ) =
m 7 B We

) —E and R:ﬁ.

(0]

(7.170)

(7.171a)
(7.171b)

(7.172)

(7.173)

(b) Show that under a Lorentz transformation (for boost in z direction) the electric and magnetic fields

transform as
E/ — yE/
B’ = 2 B'n(y),
where

E' = 7(E - feB),
c¢B' = ~(cB - BE).
Verify that
E"” — (¢B)? = E? — (¢B)?

and
E-B' =E-B=0.

(7.174a)
(7.174b)

(7.175a)
(7.175b)

(7.176)

(7.177)

(¢) Verify that for § = 84 < 1 we have B’ = 0 and E’ = E/v4. Investigate what happens to the radius

R and the pitch of the cycloid 27 R in this case.

(d) Note that for 8 = E/(¢B) > 1 we have B’ = B/~ and E’ = 0. Investigate what happens.
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