Homework No. 13 (2025 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Thursday, 2025 Apr 24, 4.30pm

1. (20 points.) The relativity principle states that the laws of physics are invariant (or covariant) when
observed using different coordinate systems. In special relativity we restrict these coordinate systems to
be uniformly moving with respect to each other. Let z = 2’ =0 at t = 0.

(a)

Linear: Spatial homogeneity, spatial isotropy, and temporal homogeneity, require the transformation
to be linear. (We will skip this derivation.) Then, for simplicity, restricting to coordinate systems
moving with respect to each other in a single direction, we can write

2 = A(w) z + B(v)t, (1a)
t' = E()z+ F(v)t. (1b)

We will refer to the respective frames as primed and unprimed.

Identity: An object P at rest in the primed frame, described by 2’ = 0, will be described in the

unprimed frame as z = vt.
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Figure 1: Identity.

Using these in Eq. (1a), we have

0= A(v)vt + B(v)t. (2)
This implies B(v) = —vA(v). Thus, show that

2z = A(v) (z — vt), (3a)

t' = E(w)z+ F(v)t. (3b)

Reversal: The descriptions of a process in the unprimed frame moving to the right with velocity v
with respect to the primed should be identical to those made in the unprimed (with their axis flipped)
moving with velocity —v with respect to the primed (with their axis flipped). This is equivalent to
the requirement of isotropy in an one dimensional space.
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Figure 2: Reversal.

That is, the transformation must be invariant under

z— —z, 2= =2, v = —. (4)



This implies

-2 = A(—v) (=2 + vt), (5a)
t' = —E(—v)z+ F(-v)t. (5b)

Show that Egs. (3a) and (5a) in conjunction imply

E(-v) = —E(v), (7a)
F(—v) = F(v). (7h)

(d) Reciprocity: The description of a process in the unprimed frame moving to the right with velocity v
is identical to the description in the primed frame moving to the left.
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Figure 3: Reciprocity.

That is, the transformation must be invariant under

(2,t) = (', 1) (2, t) — (z,t) v — —v. (8)

Show that this implies
z = A(—v) (2 +ot'), (9a)
t = E(—v)z + F(-v)t. (9b)

Show that Egs. (3) and Egs. (9) imply

E(v) =

S| =

1
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F(v) = A(v). (10b)
(e) Together, for arbitrary A(v), show that the relativity principle allows the following transformations,

2 = A(v) (2 — vt), (11a)
t' = Av) [% (ﬁ - 1) z +t] . (11b)

i. In Galilean relativity we require ¢ = ¢. Show that this is obtained with
Aw) =1 (12)

in Egs. (11). This leads to the Galilean transformation

/

Z' =z —wt, (13a)
t =t (13b)



ii. In Finstein’s special relativity the requirement is for a special speed ¢ that is described identically
by both the primed and unprimed frames. That is,

z = ct, (14a)
2 =ct. (14b)

Show that Egs. (14) when substituted in in Egs. (11) leads to
A@:—LT. (15)

3
This corresponds to the Lorentz transformation

2= A(v)(z — vt), (16a)
ﬂ:nﬂm(—%z+0. (16b)

iii. This suggests that it should be possible to contrive additional solutions for A(v) that respects
the relativity principle, but with new physical requirements for the respective choice of A(v).
Construct one such transformation. In particular, investigate modifications of Egs. (14) that
donot change the current experimental observations. The response to this part of the question
will not be used for assessment.

2. (20 points.) Lorentz transformation describing a boost in the z-direction, y-direction, and z-direction,
are
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respectively. Transformation describing a rotation about the z-axis, y-axis, and z-axis, are
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respectively. For infinitesimal transformations, 8; = §3; and w; = dw; use the approximations
v~ 1, cosw; ~ 1, sinw; ~ 0w;, (19)
to identify the generator for boosts N, and the generator for rotations the angular momentum J,
L=1+0/8-N and R=1+6w-J, (20)
respectively. Then derive
MMM:MM—MMZh (21)

This states that boosts in perpendicular direction leads to rotation. (To gain insight of the statement,
calculate [J1, Jo] and interpret the result.)

(a) Is velocity addition commutative?

(b) Is velocity addition associative?

(¢) Read a resource article (Wikipedia) on Wigner rotation.



3. (20 points.) (Based on Hughston and Tod’s book.) Prove the following.

(a) If p* is a time-like vector and pts, = 0 then s* is necessarily space-like.

p* and ¢ are both time-like vectors and ptgq, < en either both are future-pointing or bo
b) If p* and ¢ both time-lik t d p*g, < 0 th ither both fut inti both
are past-pointing.

If p* and ¢* are both light-like vectors and p*gq, = 0 then p* and ¢" are proportional.
If p* is a light-like vector and p*s, = 0, then s* is space-like or p* and s* are proportional.

(e) If u®, v*, and w®, are time-like vectors with u®v, < 0 and v*w, < 0, then w*u, < 0.
4. (20 points.) The Poincaré formula for the addition of (parallel) velocities is

Va + Vp

1+ VaUp

(22)

v =

c2

where v, and vy are velocities and c is speed of light in vacuum. Jerzy Kocik, from the department of
Mathematics in SIUC, has invented a geometric diagram that allows one to visualize the Poincaré formula.
(Refer [1].) An interactive applet for exploring velocity addition is available at Kocik’s web page [2]. (For
the following assume that the Poincaré formula holds for all speeds, subluminal (v; < ¢), superluminal
(v; > ¢), and speed of light.)

(a) Analyse what is obtained if you add two subluminal speeds?

(b) Analyse what is obtained if you add a subluminal speed to speed of light?
(
(d
(e
(f

Analyse what is obtained if you add speed of light to another speed of light?

)
)
¢) Analyse what is obtained if you add a subluminal speed to a superluminal speed?
)
) Analyse what is obtained if you add a superluminal speed to speed of light?

)

Analyse what is obtained if you add two superluminal speeds?
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http://www.mathoutlet.com/2016/08/relativistic-composition-of-velocities.html

