Homework No. 09 (Fall 2025)

PHYS 500A: MATHEMATICAL METHODS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Monday, 2025 Nov 3, 4.30pm

0. Problems 4, 5, 6, 7, 8, and 9, are for submission.

1. (Recurrence relation.) The Legendre polynomials Pj(x) of degree [ are defined, or
generated, by expanding the electric (or gravitational) potential of a point charge,
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where

-1/ = cosy = cosfcosf + sinfsinb cos(¢ — ¢'), (2)
and

r< = Minimum(r, '), (3a)
r~ = Maximum(r, ). (3b)

Thus, in terms of variables
t="5 0<t<oo (4)
>
and

T = cos7, —-1<z<1, (5)

we can define the generating function for the Legendre polynomials as

t,x t Pz 6
Setting ¢ = 0 in the above relation we immediately learn that

Legenendre polynomials of higher degrees can be derived by Taylor expansion of the
generating function. However, for large degrees it is more efficient to derive a recur-
rence relation. To derive the recurrence relation for Legendre polynomials we begin by
differentiating the generating function with respect to ¢ to obtain

dg (x —1) -1
= = [t~ Pz 8
ot (1+t2—2xt% ; ®)
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Inquire why the sum on the right hand side now starts from [ = 1. The second equality
can be rewritten in the form

\/% = (1+*—22t) > 17" P(x), (9)

and implies

(z —1) Zthl = (1 +1* — 2xt) thl LP(x). (10)

=1

Express this in the form
0 [xPo(:c) ) (:c)} 4! [3;5131(:5) — Ry(z) — 2P2<x)}

#3820+ o Rle) — 1 Pa(@) — (14 1) Bia(@)] = 0. (11

Thus, using the completeness property of Taylor expansion, that is, equating the coeffi-
cients of powers of ¢ in the expansion, we have, for t° and ¢!,

Pi(z) = zPy(x), (12a)
2Py(z) = 3z Pi(z) — Py(z), (12b)

and matching powers of ¢/ for [ > 2 we obtain the recurrence relation for Legendre
polynomials as

(14+1) Puy(z) = (20 + Dz P(x) — 1 Py (2),  1=0,1,2,3,.... (13)

Note that the recurrence relations in Eq. (16), for [ = 0 and [ = 1, reproduces Egs. (12).
The recurrence relations in Eq. (16) can be reexpressed in the form

[P(x) = (2l — )z Py(2) — (1 — 1) Po(z),  1=1,2,3,.... (14)

Thus, Eq.(14) generates Legendre polynomials of all degrees starting from Py(z) = 1,
which was obtained in Eq. (7).

. (Differential equation.) The generating function for the Legendre polynomials P(z)
of degree [ is

g(t,z) = \/m Ztlpl (15)

(a) Starting from the generating function and differentiating with respect to ¢t we derived
the recurrence relation for Legendre polynomials in Eq. (16),

(l+1)Pii(x) = (2l + 1)x P(z) — I P (x), [=0,1,2,..., (16)



in terms of
Py(r) =1=g(0,2). (17)

Differentiating the recurrence relation with respect to  show that
2U+1) P+ 20+ )P =1P_,+(1+1) P, 1=0,1,2,..., (18)

where we supressed the dependence in x and prime in the superscript of P/(x) denotes
derivative with respect to the argument .

Differentiating the generating function with respect to x show that

0o _ =1 (19

or (1+t2—2:£t%

Show that the second equality can be rewritten in the form

t o0
= (1+ = 22t) Y _t'P/(w), (20)
V1+1t2— 2t P

and implies

tZtPl = (1 + % — 2at) ZtPl (21)

=0

Express this in the form
[ Pi(x)| +'[Pl(x) - 20P}(x) - Ro(a)]

+ 3 #P@) + Py(e) =20 PLy(0) = Pa@)] = 0. (22)

=2

Then, using the completeness property of Taylor expansion, that is, equating the
coefficients of powers of ¢ in the expansion, show that, for tV and ¢!,

Py(z) =0, (23a)
Pi(z) = Py(x) =1, (23b)

and matching powers of ¢ for [ > 2 derive a recurrence relation for the derivative of
Legendre polynomials as

20 P, +P_1 =P+ P ,, 1=2,3,.... (24)
Here, we shall find it convenient to use the above recurrence relations in the form

20 P/+P =P+ P_,, 1=1,2,3,..., (25)
which is obtained by setting [ — [ + 1.
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¢) Equations (18) and (25) are linear set of equations for P/, and P/ , in terms of P,
1-1 I+1

and P/. Solve them to find

Pl.,=zP +(1+1)P, 1=0,1,2,...,
P, =xzP —1P,. 1=1,2,3,....

(d) Using | — [ — 1 in Eq. (26a) show that
Pl=aPl, +1P,.
Then, substitute Eq. (26b) to obtain

(1—2?) P =1P_, —alP.

(26a)
(26b)

(27)

(28)

Differentiate the above equation and substitute Eq. (26b) again to derive the differ-

ential equation for Legendre polynomials as

[i(u@%ﬂ(zﬁ)} (z) = 0,

Substitute x = cos# to rewrite the differential equation in the form

1 0 )
[sm@@ Sme@ +1I(+ 1)} Pi(cosf) = 0.

3. (Rodrigues formula for Legendre polynomials.)
The generating function for the Legendre polynomials Pj(x) of degree [ is

¢, Pz
g(t,z) = /714—152—21' Z 1 (

(a) Using binomial expansion show that

m'2m
and
> m/!
2t — )" =Y ———(2ut)" " (—1)".
(ot =" = 3 e 2" )

Thus, show that

1 (2m)!
m—l—n
VIt 2t Z Z minl(m — n)i2men”

m=0 n=0

men(—1yn,

(29)

(34)
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Figure 1: Double summation.

(b) In Figure 1 we illustrate how we change the double sum in m and n to variables [
and s. This is achieved using the substitutions

m+n =1, (35a)
m—n = 2s, (35Db)
which corresponds to
l l
2m =1+ 2s, m:§—|—s, and n=g-=s (36)

The counting on the variable s, for given [, follows the pattern,

[ even: 2s=0,2,4,...,1, (37a)
lodd: 2s—1,3.5 .. 1 (37h)

Show that in terms of [ and s the double summation can be expressed as

1 = (I + 2s)! :
—_— = t ¥ (—=1)27°, 38
V1+12 —2at ;Z (L +8)! (L —s)!(25)12! (=1) (38)
where the limits on the sum in s are dictated by Egs. (37) depending on [ being
even or odd. Thus, read out the polynomial expression for Legendre polynomials of
degree [ to be

[ S ' 2s L_g
6= X g a0 @

where the summation on s depends on whether [ is even or odd.
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(c¢) Show that

(%)lw% e (10)

Thus, show that

1 d\' ! I+2s los
Pl(x):ﬁ(%) ;(éjLs)!(é—s)!x (—=1)=27°. (41)

(d) For even [ the summation in s runs from s = 0 to s = [/2, Thus, writing [ 4+ 2s =
2[l — (L — s)], show that

N[~
o~

1 d : : 2\l—(5—s L_s
n0 = (i) % g et

Then, substituting

% —s=n, (43)
show that l
1 d F l' 2\l—n n
H@—mﬁa)wﬁzww”<*” (44)

Note that the summation on n runs from n = 0 to n = /2. If we were to extend
this sum to n = [ verify that the additional terms will have powers in x less than .
Since the terms in the sum are acted upon by [ derivatives with respect to x these
additional terms will not contribute. Thus, show that

Py(z) = (%)l %;W (45)

Similarly, for odd [ the summation is s runs as

2s =1,3,5,...,1, (46)
o 2s—1 -1
5 :O,1,2,...,T. (47)
Thus, substituting
8,2282_128—%, (48)

show that

x :L i N ! L1281y (55s)
P =5 (5) &y = )



Substituting
—— —s=n (50)

S (5 a

and writing

show that

1 (d\'L I o
At = 1 (35 ) 2o o@D (52)

n=0

Again, like in the case of even [ we can extend the sum on n beyond n = (I —1)/2,
because they do not survive under the action of [ derivatives with respect to . Thus,

again, we have
d\' (22— 1)

which is exactly the form obtained for even [. The expression in Eq. (53) is the
Rodrigues formula for generating the Legendre polynomials of degree [.

4. (20 points.) Using Mathematica (or another graphing tool) plot the Legendre polyno-
mials FP(z) for [ = 0,1,2,3,4 on the same plot. Note that —1 < x < 1. Based on the
pattern you see what can you conclude about the number of roots for P(z). In Mathe-
matica these plots are generated using the following commands:
Plot[{LegendreP[0,x], LegendreP[1,x], LegendreP[2,x], LegendreP[3,x],
LegendreP[4,x] },{x,-1,1}]

Compare your plots with those in Wikipedia article on ‘Legendre Polynomials’. While
there read the Wikipedia article on Adrien-Marie Legendre and the associated ‘Portrait
Debacle’.

5. (20 points.) Legendre polynomials are conveniently generated using the relation

L2 1\
P(z) = <%) %’ (54)

where —1 < x < 1. Evaluate Legendre polynomials of degree [ = 0,1,2,3,4 in this
manner.

6. (20 points.) Legendre polynomials Pj(x) satisfy the relation

1
/d:)sPl(x)zo for 1 >1. (55)

1

Verify this explicitly for [ =0,1,2, 3, 4.



7. (20 points.) Legendre polynomials satisfy the differential equation

sin 6 00 00
Verify this explicitly for [ =0,1,2, 3, 4.

[ ! gsinﬁg—l—l(lel) Py(cos ) = 0. (56)

8. (20 points.) Legendre polynomials satisfy the orthogonality relation

1
2
/_1 dzx P(x)Py(z) = ST 15u'~ (57)

Verify this explicitly for [ = 0,1,2 and I’ = 0,1,2. The orthogonality relation is also

expressed as
2

20+1

/ sin 8df Py(cos 0) Py (cos ) = o (58)
0

9. (20 points.) Recollect Legendre polynomials of order [

Pi(r) = (di) St (59)

In particular

Py(z) = 1, (60a)
P(z) ==z, (60Db)
Py(x) = gx2 — % (60c)

Consider a charged spherical shell of radius a consisting of a charge distribution in the

polar angle alone,
p(r') =0a(0)o(r' — a). (61)

The electric potential on the z-axis, § = 0 and ¢ = 0, is then given by

¢(r,0,0) = L /dgr’ p(r)

dreg Ir — /|
2 2 ™ g

— / sin 0'd¢/ o) : (62)
dmey o V12 4+ a? — 2ar cos ¢

after evaluating the v and ¢ integral.

(a) Consider a uniform charge distribution on the shell,

o) = Tra? Py(cosb). (63)
Evaluate the integral in Eq. (62) to show that
Q 1
0,0) = — 64
60,0 = 12— (64)

where r- = Min(a, ) and r~ = Max(a,r).
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(b) Next, consider a (pure dipole, 2 x 1-pole,) charge distribution of the form,

o(0)

Pi(cos ). (65)

4ma?

Evaluate the integral in Eq. (62) to show that

6(r0.0)= -2 11 <5> (66)

Ameg 3rs \r>

(¢) Next, consider a (pure quadrapole, 2 X 2-pole,) charge distribution of the form,

o(0) = Py(cos ). (67)

4ma?

Evaluate the integral in Eq. (62) to show that

o(r,0,0) = 211 (5)2. (68)

Ameg DT> \I>

(d) For a (pure 2[-pole) charge distribution

o(6)

= 1 Py(cos6) (69)

the integral in Eq. (62) leads to

Q11
0.0 = s (52) o




